Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
F
face
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Иван Кубота
face
Commits
45c9d6f8
Commit
45c9d6f8
authored
Jun 05, 2018
by
vincent
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
finalize architecture
parent
23d4664d
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
90 additions
and
30 deletions
+90
-30
index.ts
src/faceDetectionNet/index.ts
+65
-18
outputLayer.ts
src/faceDetectionNet/outputLayer.ts
+21
-11
index.ts
src/index.ts
+4
-1
No files found.
src/faceDetectionNet/index.ts
View file @
45c9d6f8
...
@@ -15,7 +15,7 @@ function fromData(input: number[]): tf.Tensor4D {
...
@@ -15,7 +15,7 @@ function fromData(input: number[]): tf.Tensor4D {
throw
new
Error
(
`invalid input size:
${
dim
}
x
${
dim
}
x3 (array length:
${
input
.
length
}
)`
)
throw
new
Error
(
`invalid input size:
${
dim
}
x
${
dim
}
x3 (array length:
${
input
.
length
}
)`
)
}
}
return
tf
.
tensor4d
(
input
as
number
[],
[
1
,
580
,
580
,
3
])
return
tf
.
tensor4d
(
input
as
number
[],
[
1
,
dim
,
dim
,
3
])
}
}
function
fromImageData
(
input
:
ImageData
[])
{
function
fromImageData
(
input
:
ImageData
[])
{
...
@@ -31,24 +31,30 @@ function fromImageData(input: ImageData[]) {
...
@@ -31,24 +31,30 @@ function fromImageData(input: ImageData[]) {
return
tf
.
cast
(
tf
.
concat
(
imgTensors
,
0
),
'float32'
)
return
tf
.
cast
(
tf
.
concat
(
imgTensors
,
0
),
'float32'
)
}
}
function
getImgTensor
(
input
:
ImageData
|
ImageData
[]
|
number
[])
{
return
tf
.
tidy
(()
=>
{
const
imgDataArray
=
input
instanceof
ImageData
?
[
input
]
:
(
input
[
0
]
instanceof
ImageData
?
input
as
ImageData
[]
:
null
)
return
imgDataArray
!==
null
?
fromImageData
(
imgDataArray
)
:
fromData
(
input
as
number
[])
})
}
export
function
faceDetectionNet
(
weights
:
Float32Array
)
{
export
function
faceDetectionNet
(
weights
:
Float32Array
)
{
const
params
=
extractParams
(
weights
)
const
params
=
extractParams
(
weights
)
async
function
forward
(
input
:
ImageData
|
ImageData
[]
|
number
[]
)
{
function
forwardTensor
(
imgTensor
:
tf
.
Tensor4D
)
{
return
tf
.
tidy
(()
=>
{
return
tf
.
tidy
(()
=>
{
const
imgDataArray
=
input
instanceof
ImageData
?
[
input
]
:
(
input
[
0
]
instanceof
ImageData
?
input
as
ImageData
[]
:
null
)
const
imgTensor
=
imgDataArray
!==
null
?
fromImageData
(
imgDataArray
)
:
fromData
(
input
as
number
[])
const
resized
=
resizeLayer
(
imgTensor
)
as
tf
.
Tensor4D
const
resized
=
resizeLayer
(
imgTensor
)
as
tf
.
Tensor4D
const
features
=
mobileNetV1
(
resized
,
params
.
mobilenetv1_params
)
const
features
=
mobileNetV1
(
resized
,
params
.
mobilenetv1_params
)
...
@@ -57,14 +63,54 @@ export function faceDetectionNet(weights: Float32Array) {
...
@@ -57,14 +63,54 @@ export function faceDetectionNet(weights: Float32Array) {
classPredictions
classPredictions
}
=
predictionLayer
(
features
.
out
,
features
.
conv11
,
params
.
prediction_layer_params
)
}
=
predictionLayer
(
features
.
out
,
features
.
conv11
,
params
.
prediction_layer_params
)
const
decoded
=
outputLayer
(
boxPredictions
,
classPredictions
,
params
.
output_layer_params
)
return
outputLayer
(
boxPredictions
,
classPredictions
,
params
.
output_layer_params
)
})
}
// TODO debug output
function
forward
(
input
:
ImageData
|
ImageData
[]
|
number
[])
{
return
tf
.
tidy
(
()
=>
forwardTensor
(
getImgTensor
(
input
))
)
}
return
decoded
async
function
locateFaces
(
input
:
ImageData
|
ImageData
[]
|
number
[],
minConfidence
:
number
=
0.8
)
{
const
imgTensor
=
getImgTensor
(
input
)
const
[
_
,
height
,
width
]
=
imgTensor
.
shape
const
{
boxes
:
_boxes
,
scores
:
_scores
}
=
forwardTensor
(
imgTensor
)
// TODO batches
const
boxes
=
_boxes
[
0
]
const
scores
=
_scores
[
0
]
// TODO find a better way to filter by minConfidence
const
data
=
await
scores
.
data
()
return
Array
.
from
(
data
)
.
map
((
score
,
idx
)
=>
({
score
,
idx
}))
.
filter
(({
score
})
=>
minConfidence
<
score
)
.
map
(({
score
,
idx
})
=>
({
score
,
box
:
{
left
:
Math
.
max
(
0
,
width
*
boxes
.
get
(
idx
,
0
)),
right
:
Math
.
min
(
width
,
width
*
boxes
.
get
(
idx
,
1
)),
top
:
Math
.
max
(
0
,
height
*
boxes
.
get
(
idx
,
2
)),
bottom
:
Math
.
min
(
height
,
height
*
boxes
.
get
(
idx
,
3
))
}
}))
})
}
}
return
{
return
{
forward
forward
,
locateFaces
}
}
}
}
\ No newline at end of file
src/faceDetectionNet/outputLayer.ts
View file @
45c9d6f8
...
@@ -2,12 +2,6 @@ import * as tf from '@tensorflow/tfjs-core';
...
@@ -2,12 +2,6 @@ import * as tf from '@tensorflow/tfjs-core';
import
{
FaceDetectionNet
}
from
'./types'
;
import
{
FaceDetectionNet
}
from
'./types'
;
function
batchMultiClassNonMaxSuppressionLayer
(
x0
:
tf
.
Tensor2D
,
x1
:
tf
.
Tensor2D
)
{
// TODO
return
x0
}
function
getCenterCoordinatesAndSizesLayer
(
x
:
tf
.
Tensor2D
)
{
function
getCenterCoordinatesAndSizesLayer
(
x
:
tf
.
Tensor2D
)
{
const
vec
=
tf
.
unstack
(
tf
.
transpose
(
x
,
[
1
,
0
]))
const
vec
=
tf
.
unstack
(
tf
.
transpose
(
x
,
[
1
,
0
]))
...
@@ -27,7 +21,7 @@ function getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) {
...
@@ -27,7 +21,7 @@ function getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) {
}
}
}
}
function
decodeLayer
(
x0
:
tf
.
Tensor2D
,
x1
:
tf
.
Tensor2D
)
{
function
decode
Boxes
Layer
(
x0
:
tf
.
Tensor2D
,
x1
:
tf
.
Tensor2D
)
{
const
{
const
{
sizes
,
sizes
,
centers
centers
...
@@ -61,15 +55,30 @@ export function outputLayer(
...
@@ -61,15 +55,30 @@ export function outputLayer(
const
batchSize
=
boxPredictions
.
shape
[
0
]
const
batchSize
=
boxPredictions
.
shape
[
0
]
const
decoded
=
decode
Layer
(
let
boxes
=
decodeBoxes
Layer
(
tf
.
reshape
(
tf
.
tile
(
params
.
extra_dim
,
[
batchSize
,
1
,
1
]),
[
-
1
,
4
])
as
tf
.
Tensor2D
,
tf
.
reshape
(
tf
.
tile
(
params
.
extra_dim
,
[
batchSize
,
1
,
1
]),
[
-
1
,
4
])
as
tf
.
Tensor2D
,
tf
.
reshape
(
boxPredictions
,
[
-
1
,
4
])
as
tf
.
Tensor2D
tf
.
reshape
(
boxPredictions
,
[
-
1
,
4
])
as
tf
.
Tensor2D
)
)
boxes
=
tf
.
reshape
(
boxes
,
[
batchSize
,
(
boxes
.
shape
[
0
]
/
batchSize
),
4
]
)
const
scoresAndClasses
=
tf
.
sigmoid
(
tf
.
slice
(
classPredictions
,
[
0
,
0
,
1
],
[
-
1
,
-
1
,
-
1
]))
let
scores
=
tf
.
slice
(
scoresAndClasses
,
[
0
,
0
,
0
],
[
-
1
,
-
1
,
1
])
as
tf
.
Tensor
scores
=
tf
.
reshape
(
scores
,
[
batchSize
,
scores
.
shape
[
1
]]
)
const
in1
=
tf
.
sigmoid
(
tf
.
slice
(
classPredictions
,
[
0
,
0
,
1
],
[
-
1
,
-
1
,
-
1
]))
const
boxesByBatch
=
tf
.
unstack
(
boxes
)
as
tf
.
Tensor2D
[]
const
in2
=
tf
.
expandDims
(
tf
.
reshape
(
decoded
,
[
batchSize
,
5118
,
4
]),
2
)
const
scoresByBatch
=
tf
.
unstack
(
scores
)
as
tf
.
Tensor1D
[]
return
decoded
return
{
boxes
:
boxesByBatch
,
scores
:
scoresByBatch
}
})
})
}
}
\ No newline at end of file
src/index.ts
View file @
45c9d6f8
...
@@ -2,10 +2,12 @@ import { euclideanDistance } from './euclideanDistance';
...
@@ -2,10 +2,12 @@ import { euclideanDistance } from './euclideanDistance';
import
{
faceDetectionNet
}
from
'./faceDetectionNet'
;
import
{
faceDetectionNet
}
from
'./faceDetectionNet'
;
import
{
faceRecognitionNet
}
from
'./faceRecognitionNet'
;
import
{
faceRecognitionNet
}
from
'./faceRecognitionNet'
;
import
{
normalize
}
from
'./normalize'
;
import
{
normalize
}
from
'./normalize'
;
import
*
as
tf
from
'@tensorflow/tfjs-core'
;
export
{
export
{
euclideanDistance
,
euclideanDistance
,
faceDetectionNet
,
faceDetectionNet
,
faceRecognitionNet
,
faceRecognitionNet
,
normalize
normalize
,
tf
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment