Commit 39069eaf by vincent

provide sync and async computeFaceDescriptor

parent 49cf1e26
This source diff could not be displayed because it is too large. You can view the blob instead.
export declare function faceRecognitionNet(weights: Float32Array): (input: number[]) => number[];
export declare function faceRecognitionNet(weights: Float32Array): {
computeFaceDescriptor: (input: number[]) => Promise<Int32Array | Uint8Array | Float32Array>;
computeFaceDescriptorSync: (input: number[]) => Int32Array | Uint8Array | Float32Array;
};
......@@ -5,9 +5,10 @@ import { extractParams } from './extractParams';
import { residual, residualDown } from './residualLayer';
export function faceRecognitionNet(weights) {
var params = extractParams(weights);
return function (input) {
function forward(input) {
return tf.tidy(function () {
var x = tf.tensor4d(normalize(input), [1, 150, 150, 3]);
var norm = normalize(input);
var x = tf.tensor4d(norm, [1, 150, 150, 3]);
var out = convDown(x, params.conv32_down);
out = tf.maxPool(out, 3, 2, 'valid');
out = residual(out, params.conv32_1);
......@@ -26,8 +27,14 @@ export function faceRecognitionNet(weights) {
out = residualDown(out, params.conv256_down_out);
var globalAvg = out.mean([1, 2]);
var fullyConnected = tf.matMul(globalAvg, params.fc);
return Array.from(fullyConnected.dataSync());
return fullyConnected;
});
}
var computeFaceDescriptor = function (input) { return forward(input).data(); };
var computeFaceDescriptorSync = function (input) { return forward(input).dataSync(); };
return {
computeFaceDescriptor: computeFaceDescriptor,
computeFaceDescriptorSync: computeFaceDescriptorSync
};
}
//# sourceMappingURL=index.js.map
\ No newline at end of file
{"version":3,"file":"index.js","sourceRoot":"","sources":["../../src/faceRecognitionNet/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,MAAM,uBAAuB,CAAC;AAE5C,OAAO,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AACzC,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AACvC,OAAO,EAAE,aAAa,EAAE,MAAM,iBAAiB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAEzD,MAAM,6BAA6B,OAAqB;IACtD,IAAM,MAAM,GAAG,aAAa,CAAC,OAAO,CAAC,CAAA;IAErC,OAAO,UAAU,KAAe;QAE9B,OAAO,EAAE,CAAC,IAAI,CAAC;YAEb,IAAM,CAAC,GAAG,EAAE,CAAC,QAAQ,CAAC,SAAS,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAA;YAEzD,IAAI,GAAG,GAAG,QAAQ,CAAC,CAAC,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YACzC,GAAG,GAAG,EAAE,CAAC,OAAO,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAA;YAEpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAC3C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YAErC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,gBAAgB,CAAC,CAAA;YAEhD,IAAM,SAAS,GAAG,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAgB,CAAA;YACjD,IAAM,cAAc,GAAG,EAAE,CAAC,MAAM,CAAC,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC,CAAA;YAEtD,OAAO,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,CAAC,CAAA;QAC9C,CAAC,CAAC,CAAA;IACJ,CAAC,CAAA;AACH,CAAC"}
\ No newline at end of file
{"version":3,"file":"index.js","sourceRoot":"","sources":["../../src/faceRecognitionNet/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,MAAM,uBAAuB,CAAC;AAE5C,OAAO,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AACzC,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AACvC,OAAO,EAAE,aAAa,EAAE,MAAM,iBAAiB,CAAC;AAChD,OAAO,EAAE,QAAQ,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAEzD,MAAM,6BAA6B,OAAqB;IACtD,IAAM,MAAM,GAAG,aAAa,CAAC,OAAO,CAAC,CAAA;IAErC,iBAAiB,KAAe;QAE9B,OAAO,EAAE,CAAC,IAAI,CAAC;YAEb,IAAM,IAAI,GAAG,SAAS,CAAC,KAAK,CAAC,CAAA;YAE7B,IAAM,CAAC,GAAG,EAAE,CAAC,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAA;YAE7C,IAAI,GAAG,GAAG,QAAQ,CAAC,CAAC,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YACzC,GAAG,GAAG,EAAE,CAAC,OAAO,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAA;YAEpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAC3C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YAErC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,QAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,YAAY,CAAC,GAAG,EAAE,MAAM,CAAC,gBAAgB,CAAC,CAAA;YAEhD,IAAM,SAAS,GAAG,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAgB,CAAA;YACjD,IAAM,cAAc,GAAG,EAAE,CAAC,MAAM,CAAC,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC,CAAA;YAEtD,OAAO,cAAc,CAAA;QACvB,CAAC,CAAC,CAAA;IACJ,CAAC;IAED,IAAM,qBAAqB,GAAG,UAAC,KAAe,IAAK,OAAA,OAAO,CAAC,KAAK,CAAC,CAAC,IAAI,EAAE,EAArB,CAAqB,CAAA;IACxE,IAAM,yBAAyB,GAAG,UAAC,KAAe,IAAK,OAAA,OAAO,CAAC,KAAK,CAAC,CAAC,QAAQ,EAAE,EAAzB,CAAyB,CAAA;IAEhF,OAAO;QACL,qBAAqB,uBAAA;QACrB,yBAAyB,2BAAA;KAC1B,CAAA;AACH,CAAC"}
\ No newline at end of file
......@@ -8,11 +8,13 @@ import { residual, residualDown } from './residualLayer';
export function faceRecognitionNet(weights: Float32Array) {
const params = extractParams(weights)
return function (input: number[]) {
function forward(input: number[]) {
return tf.tidy(() => {
const x = tf.tensor4d(normalize(input), [1, 150, 150, 3])
const norm = normalize(input)
const x = tf.tensor4d(norm, [1, 150, 150, 3])
let out = convDown(x, params.conv32_down)
out = tf.maxPool(out, 3, 2, 'valid')
......@@ -38,7 +40,15 @@ export function faceRecognitionNet(weights: Float32Array) {
const globalAvg = out.mean([1, 2]) as tf.Tensor2D
const fullyConnected = tf.matMul(globalAvg, params.fc)
return Array.from(fullyConnected.dataSync())
return fullyConnected
})
}
const computeFaceDescriptor = (input: number[]) => forward(input).data()
const computeFaceDescriptorSync = (input: number[]) => forward(input).dataSync()
return {
computeFaceDescriptor,
computeFaceDescriptorSync
}
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment