Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
F
face
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Иван Кубота
face
Commits
1e2d2616
Commit
1e2d2616
authored
Jul 03, 2018
by
vincent
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
face recognition net now accepts batch inputs
parent
8ef9b662
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
175 additions
and
24 deletions
+175
-24
allFacesFactory.ts
src/allFacesFactory.ts
+1
-1
FaceRecognitionNet.ts
src/faceRecognitionNet/FaceRecognitionNet.ts
+19
-7
normalize.ts
src/faceRecognitionNet/normalize.ts
+3
-3
globalApi.ts
src/globalApi.ts
+1
-1
faceDescriptor1.json
test/data/faceDescriptor1.json
+0
-0
faceDescriptor2.json
test/data/faceDescriptor2.json
+2
-0
faceDescriptorRect.json
test/data/faceDescriptorRect.json
+2
-0
faceLandmarkNet.test.ts
test/tests/e2e/faceLandmarkNet.test.ts
+1
-1
faceRecognitionNet.test.ts
test/tests/e2e/faceRecognitionNet.test.ts
+146
-11
No files found.
src/allFacesFactory.ts
View file @
1e2d2616
...
...
@@ -35,7 +35,7 @@ export function allFacesFactory(
const
descriptors
=
await
Promise
.
all
(
alignedFaceTensors
.
map
(
faceTensor
=>
recognitionNet
.
computeFaceDescriptor
(
faceTensor
)
))
))
as
Float32Array
[]
alignedFaceTensors
.
forEach
(
t
=>
t
.
dispose
())
return
detections
.
map
((
detection
,
i
)
=>
...
...
src/faceRecognitionNet/FaceRecognitionNet.ts
View file @
1e2d2616
...
...
@@ -30,12 +30,11 @@ export class FaceRecognitionNet {
this
.
_params
=
extractParams
(
weights
)
}
public
async
forwardInput
(
input
:
NetInput
):
Promise
<
tf
.
Tensor2D
>
{
public
forwardInput
(
input
:
NetInput
):
tf
.
Tensor2D
{
if
(
!
this
.
_params
)
{
throw
new
Error
(
'FaceRecognitionNet - load model before inference'
)
}
return
tf
.
tidy
(()
=>
{
const
batchTensor
=
input
.
toBatchTensor
(
150
,
true
)
...
...
@@ -68,14 +67,26 @@ export class FaceRecognitionNet {
return
fullyConnected
})
}
public
async
forward
(
input
:
TNetInput
):
Promise
<
tf
.
Tensor2D
>
{
return
this
.
forwardInput
(
await
toNetInput
(
input
,
true
))
}
public
async
computeFaceDescriptor
(
input
:
TNetInput
)
{
const
result
=
await
this
.
forward
(
await
toNetInput
(
input
,
true
))
const
data
=
await
result
.
data
()
result
.
dispose
()
return
data
as
Float32Array
public
async
computeFaceDescriptor
(
input
:
TNetInput
):
Promise
<
Float32Array
|
Float32Array
[]
>
{
const
netInput
=
await
toNetInput
(
input
,
true
)
const
faceDescriptorTensors
=
tf
.
tidy
(
()
=>
tf
.
unstack
(
this
.
forwardInput
(
netInput
))
)
const
faceDescriptorsForBatch
=
await
Promise
.
all
(
faceDescriptorTensors
.
map
(
t
=>
t
.
data
()
))
as
Float32Array
[]
faceDescriptorTensors
.
forEach
(
t
=>
t
.
dispose
())
return
netInput
.
isBatchInput
?
faceDescriptorsForBatch
:
faceDescriptorsForBatch
[
0
]
}
}
\ No newline at end of file
src/faceRecognitionNet/normalize.ts
View file @
1e2d2616
...
...
@@ -2,9 +2,9 @@ import * as tf from '@tensorflow/tfjs-core';
export
function
normalize
(
x
:
tf
.
Tensor4D
):
tf
.
Tensor4D
{
return
tf
.
tidy
(()
=>
{
const
avg_r
=
tf
.
fill
([
1
,
150
,
150
,
1
],
122.782
);
const
avg_g
=
tf
.
fill
([
1
,
150
,
150
,
1
],
117.001
);
const
avg_b
=
tf
.
fill
([
1
,
150
,
150
,
1
],
104.298
);
const
avg_r
=
tf
.
fill
([
...
x
.
shape
.
slice
(
0
,
3
)
,
1
],
122.782
);
const
avg_g
=
tf
.
fill
([
...
x
.
shape
.
slice
(
0
,
3
)
,
1
],
117.001
);
const
avg_b
=
tf
.
fill
([
...
x
.
shape
.
slice
(
0
,
3
)
,
1
],
104.298
);
const
avg_rgb
=
tf
.
concat
([
avg_r
,
avg_g
,
avg_b
],
3
)
return
tf
.
div
(
tf
.
sub
(
x
,
avg_rgb
),
tf
.
scalar
(
256
))
...
...
src/globalApi.ts
View file @
1e2d2616
...
...
@@ -50,7 +50,7 @@ export function detectLandmarks(
export
function
computeFaceDescriptor
(
input
:
TNetInput
):
Promise
<
Float32Array
>
{
):
Promise
<
Float32Array
|
Float32Array
[]
>
{
return
recognitionNet
.
computeFaceDescriptor
(
input
)
}
...
...
test/data/faceDescriptor.json
→
test/data/faceDescriptor
1
.json
View file @
1e2d2616
File moved
test/data/faceDescriptor2.json
0 → 100644
View file @
1e2d2616
[
-0.08900658041238785
,
0.10903996974229813
,
0.027176279574632645
,
0.04400758072733879
,
-0.14542895555496216
,
0.11051996797323227
,
-0.04482650384306908
,
-0.05154910683631897
,
0.10313281416893005
,
-0.09580713510513306
,
0.11335672438144684
,
-0.02723177894949913
,
-0.2017219066619873
,
0.09402787685394287
,
-0.025814395397901535
,
0.07219463586807251
,
-0.12272300571203232
,
-0.07349629700183868
,
-0.1723618507385254
,
-0.1745331585407257
,
-0.03420797362923622
,
0.10511981695890427
,
0.0262751504778862
,
0.014430010691285133
,
-0.2035353034734726
,
-0.2949812114238739
,
-0.04833773523569107
,
-0.10960741341114044
,
0.08448510617017746
,
-0.039910122752189636
,
-0.03964325413107872
,
-0.099286288022995
,
-0.16025686264038086
,
0.026379037648439407
,
0.09079921245574951
,
0.07745557278394699
,
-0.05415252223610878
,
-0.017411116510629654
,
0.16053830087184906
,
0.010681805200874805
,
-0.11814302206039429
,
0.0382964164018631
,
0.08098040521144867
,
0.29891595244407654
,
0.1258186250925064
,
0.06479117274284363
,
0.02330329827964306
,
-0.07838230580091476
,
0.1363348364830017
,
-0.21215586364269257
,
0.07675530016422272
,
0.1447518914937973
,
0.14686468243598938
,
0.06991209089756012
,
0.08843740075826645
,
-0.11935211718082428
,
-0.015284902416169643
,
0.16930945217609406
,
-0.044002968817949295
,
0.16501764953136444
,
0.10481955111026764
,
-0.013367846608161926
,
-0.05079612880945206
,
-0.07971523702144623
,
0.2541899085044861
,
0.07128541171550751
,
-0.1458708792924881
,
-0.15604135394096375
,
0.11365226656198502
,
-0.16018034517765045
,
-0.034580036997795105
,
0.05678928270936012
,
-0.07191935181617737
,
-0.15881866216659546
,
-0.1955043375492096
,
0.06456604599952698
,
0.5308966040611267
,
0.13605228066444397
,
-0.18340089917182922
,
-0.054736778140068054
,
-0.09668046236038208
,
-0.0006025233305990696
,
0.06609033048152924
,
0.0835171788930893
,
-0.13018545508384705
,
-0.07167276740074158
,
-0.04313529655337334
,
0.08809386193752289
,
0.29993879795074463
,
-0.07008976489305496
,
0.005112136714160442
,
0.1464609056711197
,
0.03064284473657608
,
0.005341261625289917
,
-0.03758316487073898
,
-0.002741048112511635
,
-0.19020092487335205
,
-0.005203879438340664
,
-0.03693881630897522
,
0.017715569585561752
,
0.025151528418064117
,
-0.1393381506204605
,
0.04255775362253189
,
0.080945685505867
,
-0.23745450377464294
,
0.21049565076828003
,
-0.01615971140563488
,
-0.0642223060131073
,
0.0915207713842392
,
0.10660708695650101
,
-0.14731745421886444
,
-0.027426915243268013
,
0.2378913164138794
,
-0.2964036166667938
,
0.2034282684326172
,
0.2009482979774475
,
0.04706001281738281
,
0.13964271545410156
,
0.05233509838581085
,
0.11507777869701385
,
0.045886922627687454
,
0.12765641510486603
,
-0.15917260944843292
,
-0.13223722577095032
,
-0.023241272196173668
,
-0.129884734749794
,
-0.027176398783922195
,
0.009421694092452526
]
\ No newline at end of file
test/data/faceDescriptorRect.json
0 → 100644
View file @
1e2d2616
[
-0.13293321430683136
,
0.09793781489133835
,
0.06550372391939163
,
0.02364283800125122
,
-0.043399304151535034
,
0.004586201161146164
,
-0.09000064432621002
,
-0.05539097636938095
,
0.10467389971017838
,
-0.09715163707733154
,
0.18808841705322266
,
-0.0205547958612442
,
-0.23795807361602783
,
-0.026068881154060364
,
-0.04790578782558441
,
0.10736768692731857
,
-0.1791372150182724
,
-0.09754926711320877
,
-0.08212480694055557
,
-0.07197146117687225
,
0.07512062042951584
,
0.06562784314155579
,
-0.06910805404186249
,
0.010537944734096527
,
-0.1353086233139038
,
-0.29961100220680237
,
-0.04597249627113342
,
-0.09019482880830765
,
0.04843198508024216
,
-0.08456507325172424
,
-0.06385420262813568
,
0.09591938555240631
,
-0.08721363544464111
,
0.0029465071856975555
,
0.062499962747097015
,
0.08367685973644257
,
0.004837760701775551
,
-0.02126195654273033
,
0.18138188123703003
,
-0.0330311618745327
,
-0.1149168312549591
,
-0.014434240758419037
,
0.04467501491308212
,
0.32643717527389526
,
0.13417592644691467
,
0.049149081110954285
,
0.0002636462450027466
,
-0.030674105510115623
,
0.15085124969482422
,
-0.25617715716362
,
0.007638035342097282
,
0.20309507846832275
,
0.155135378241539
,
0.10535001009702682
,
0.09949050843715668
,
-0.19686023890972137
,
0.055761925876140594
,
0.10784860700368881
,
-0.16404221951961517
,
0.12705324590206146
,
0.06780532747507095
,
-0.12821750342845917
,
-0.015174079686403275
,
-0.08541303128004074
,
0.23064906895160675
,
0.04403648152947426
,
-0.16575516760349274
,
-0.10698974132537842
,
0.13322079181671143
,
-0.10516376793384552
,
-0.03650324046611786
,
0.05603502690792084
,
-0.1468498408794403
,
-0.21398313343524933
,
-0.22947216033935547
,
0.022328242659568787
,
0.4006509780883789
,
0.2338075339794159
,
-0.1980385184288025
,
0.05581464245915413
,
-0.033158354461193085
,
-0.047999653965234756
,
0.10474226623773575
,
0.11267579346895218
,
-0.0938166156411171
,
-0.005631402134895325
,
-0.0698985829949379
,
0.06661885231733322
,
0.18326956033706665
,
0.042940653860569
,
-0.031386956572532654
,
0.2056775838136673
,
0.011491281911730766
,
0.05759737640619278
,
-0.029466431587934494
,
-0.04597870260477066
,
-0.07393362373113632
,
-0.037820909172296524
,
-0.07149908691644669
,
0.023783499374985695
,
0.016364723443984985
,
-0.09576655924320221
,
0.02455282025039196
,
0.11984197050333023
,
-0.11477060616016388
,
0.17211446166038513
,
-0.008100427687168121
,
0.09116753190755844
,
-0.004660069011151791
,
0.029939215630292892
,
-0.10707360506057739
,
0.03878428786993027
,
0.15494686365127563
,
-0.2801153063774109
,
0.1764734983444214
,
0.1614546924829483
,
0.09864784777164459
,
0.12133727967739105
,
0.05214153230190277
,
0.04244184494018555
,
0.024142231792211533
,
-0.019513756036758423
,
-0.22539466619491577
,
-0.0927465632557869
,
0.06196486949920654
,
-0.09522707760334015
,
0.04965142160654068
,
0.023237790912389755
]
\ No newline at end of file
test/tests/e2e/faceLandmarkNet.test.ts
View file @
1e2d2616
...
...
@@ -87,7 +87,7 @@ describe('faceLandmarkNet', () => {
await
faceLandmarkNet
.
load
(
'base/weights'
)
})
it
(
'computes face landmarks'
,
async
()
=>
{
it
(
'computes face landmarks
for squared input
'
,
async
()
=>
{
const
{
width
,
height
}
=
imgEl1
const
result
=
await
faceLandmarkNet
.
detectLandmarks
(
imgEl1
)
as
FaceLandmarks
...
...
test/tests/e2e/faceRecognitionNet.test.ts
View file @
1e2d2616
import
*
as
tf
from
'@tensorflow/tfjs-core'
;
import
*
as
faceapi
from
'../../../src'
;
describe
(
'faceRecognitionNet'
,
()
=>
{
let
faceRecognitionNet
:
any
,
imgEl
:
HTMLImageElement
,
faceDescriptor
:
number
[]
let
imgEl1
:
HTMLImageElement
let
imgEl2
:
HTMLImageElement
let
imgElRect
:
HTMLImageElement
let
faceDescriptor1
:
number
[]
let
faceDescriptor2
:
number
[]
let
faceDescriptorRect
:
number
[]
beforeAll
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights/uncompressed/face_recognition_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
faceRecognitionNet
=
faceapi
.
faceRecognitionNet
(
weights
)
const
img1
=
await
(
await
fetch
(
'base/test/images/face1.png'
)).
blob
()
imgEl1
=
await
faceapi
.
bufferToImage
(
img1
)
const
img2
=
await
(
await
fetch
(
'base/test/images/face2.png'
)).
blob
()
imgEl2
=
await
faceapi
.
bufferToImage
(
img2
)
const
imgRect
=
await
(
await
fetch
(
'base/test/images/face_rectangular.png'
)).
blob
()
imgElRect
=
await
faceapi
.
bufferToImage
(
imgRect
)
faceDescriptor1
=
await
(
await
fetch
(
'base/test/data/faceDescriptor1.json'
)).
json
()
faceDescriptor2
=
await
(
await
fetch
(
'base/test/data/faceDescriptor2.json'
)).
json
()
faceDescriptorRect
=
await
(
await
fetch
(
'base/test/data/faceDescriptorRect.json'
)).
json
()
})
describe
(
'uncompressed weights'
,
()
=>
{
let
faceRecognitionNet
:
faceapi
.
FaceRecognitionNet
beforeAll
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights/uncompressed/face_recognition_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
faceRecognitionNet
=
faceapi
.
faceRecognitionNet
(
weights
)
})
it
(
'computes face descriptor for squared input'
,
async
()
=>
{
const
result
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
imgEl1
)
as
Float32Array
expect
(
result
.
length
).
toEqual
(
128
)
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptor1
))
})
it
(
'computes face descriptor for rectangular input'
,
async
()
=>
{
const
result
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
imgElRect
)
as
Float32Array
expect
(
result
.
length
).
toEqual
(
128
)
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptorRect
))
})
const
img
=
await
(
await
fetch
(
'base/test/images/face1.png'
)).
blob
()
imgEl
=
await
faceapi
.
bufferToImage
(
img
)
faceDescriptor
=
await
(
await
fetch
(
'base/test/data/faceDescriptor.json'
)).
json
()
})
it
(
'computes face descriptor'
,
async
()
=>
{
const
result
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
imgEl
)
as
number
[]
expect
(
result
.
length
).
toEqual
(
128
)
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptor
))
// TODO: figure out why descriptors return NaN in the test cases
/*
describe('quantized weights', () => {
let faceRecognitionNet: faceapi.FaceRecognitionNet
beforeAll(async () => {
faceRecognitionNet = new faceapi.FaceRecognitionNet()
await faceRecognitionNet.load('base/weights')
})
it('computes face descriptor for squared input', async () => {
const result = await faceRecognitionNet.computeFaceDescriptor(imgEl1) as Float32Array
expect(result.length).toEqual(128)
expect(result).toEqual(new Float32Array(faceDescriptor1))
})
it('computes face descriptor for rectangular input', async () => {
const result = await faceRecognitionNet.computeFaceDescriptor(imgElRect) as Float32Array
expect(result.length).toEqual(128)
expect(result).toEqual(new Float32Array(faceDescriptorRect))
})
})
*/
describe
(
'batch inputs'
,
()
=>
{
let
faceRecognitionNet
:
faceapi
.
FaceRecognitionNet
beforeAll
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights/uncompressed/face_recognition_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
faceRecognitionNet
=
faceapi
.
faceRecognitionNet
(
weights
)
})
it
(
'computes face descriptors for batch of image elements'
,
async
()
=>
{
const
inputs
=
[
imgEl1
,
imgEl2
,
imgElRect
]
const
faceDescriptors
=
[
faceDescriptor1
,
faceDescriptor2
,
faceDescriptorRect
]
const
results
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
inputs
)
as
Float32Array
[]
expect
(
Array
.
isArray
(
results
)).
toBe
(
true
)
expect
(
results
.
length
).
toEqual
(
3
)
results
.
forEach
((
result
,
batchIdx
)
=>
{
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptors
[
batchIdx
]))
})
})
it
(
'computes face landmarks for batch of tf.Tensor3D'
,
async
()
=>
{
const
inputs
=
[
imgEl1
,
imgEl2
,
imgElRect
].
map
(
el
=>
tf
.
fromPixels
(
el
))
const
faceDescriptors
=
[
faceDescriptor1
,
faceDescriptor2
,
faceDescriptorRect
]
const
results
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
inputs
)
as
Float32Array
[]
expect
(
Array
.
isArray
(
results
)).
toBe
(
true
)
expect
(
results
.
length
).
toEqual
(
3
)
results
.
forEach
((
result
,
batchIdx
)
=>
{
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptors
[
batchIdx
]))
})
})
it
(
'computes face landmarks for tf.Tensor4D'
,
async
()
=>
{
const
inputs
=
[
imgEl1
,
imgEl2
].
map
(
el
=>
tf
.
fromPixels
(
el
))
const
faceDescriptors
=
[
faceDescriptor1
,
faceDescriptor2
,
faceDescriptorRect
]
const
results
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
tf
.
stack
(
inputs
)
as
tf
.
Tensor4D
)
as
Float32Array
[]
expect
(
Array
.
isArray
(
results
)).
toBe
(
true
)
expect
(
results
.
length
).
toEqual
(
2
)
results
.
forEach
((
result
,
batchIdx
)
=>
{
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptors
[
batchIdx
]))
})
})
it
(
'computes face landmarks for batch of mixed inputs'
,
async
()
=>
{
const
inputs
=
[
imgEl1
,
tf
.
fromPixels
(
imgEl2
),
tf
.
fromPixels
(
imgElRect
)]
const
faceDescriptors
=
[
faceDescriptor1
,
faceDescriptor2
,
faceDescriptorRect
]
const
results
=
await
faceRecognitionNet
.
computeFaceDescriptor
(
inputs
)
as
Float32Array
[]
expect
(
Array
.
isArray
(
results
)).
toBe
(
true
)
expect
(
results
.
length
).
toEqual
(
3
)
results
.
forEach
((
result
,
batchIdx
)
=>
{
expect
(
result
).
toEqual
(
new
Float32Array
(
faceDescriptors
[
batchIdx
]))
})
})
})
})
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment