Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
F
face
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Иван Кубота
face
Commits
fd42e095
Commit
fd42e095
authored
Jul 31, 2018
by
vincent
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
only keep quantized models in this repo + renamed face_detection_model to ssd_mobilenetv1_model
parent
b09fbe45
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
14 additions
and
13 deletions
+14
-13
.gitignore
.gitignore
+3
-2
karma.conf.js
karma.conf.js
+2
-1
loadQuantizedParams.ts
src/faceDetectionNet/loadQuantizedParams.ts
+1
-1
expectedResults.ts
test/tests/e2e/expectedResults.ts
+0
-1
faceDetectionNet.test.ts
test/tests/e2e/faceDetectionNet.test.ts
+1
-1
faceLandmarkNet.test.ts
test/tests/e2e/faceLandmarkNet.test.ts
+1
-1
faceRecognitionNet.test.ts
test/tests/e2e/faceRecognitionNet.test.ts
+1
-1
mtcnn.test.ts
test/tests/e2e/mtcnn.test.ts
+1
-1
utils.ts
test/utils.ts
+2
-2
face_detection_model-weights_manifest.json
weights/face_detection_model-weights_manifest.json
+0
-2
ssd_mobilenetv1_model-shard1
weights/ssd_mobilenetv1_model-shard1
+0
-0
ssd_mobilenetv1_model-shard2
weights/ssd_mobilenetv1_model-shard2
+0
-0
ssd_mobilenetv1_model-weights_manifest.json
weights/ssd_mobilenetv1_model-weights_manifest.json
+2
-0
face_detection_model.weights
weights/uncompressed/face_detection_model.weights
+0
-0
face_landmark_68_model.weights
weights/uncompressed/face_landmark_68_model.weights
+0
-0
face_recognition_model.weights
weights/uncompressed/face_recognition_model.weights
+0
-0
mtcnn_model.weights
weights/uncompressed/mtcnn_model.weights
+0
-0
tiny_yolov2_model.weights
weights/uncompressed/tiny_yolov2_model.weights
+0
-0
No files found.
.gitignore
View file @
fd42e095
node_modules
.rpt2_cache
.env*
tmp
\ No newline at end of file
tmp
weights_uncompressed
\ No newline at end of file
karma.conf.js
View file @
fd42e095
...
...
@@ -3,7 +3,8 @@ const dataFiles = [
'test/images/*.png'
,
'test/data/*.json'
,
'test/media/*.mp4'
,
'weights/**/*'
'weights/**/*'
,
'weights_uncompressed/**/*'
].
map
(
pattern
=>
({
pattern
,
watched
:
false
,
...
...
src/faceDetectionNet/loadQuantizedParams.ts
View file @
fd42e095
...
...
@@ -7,7 +7,7 @@ import { loadWeightMap } from '../commons/loadWeightMap';
import
{
ConvParams
,
ParamMapping
}
from
'../commons/types'
;
import
{
BoxPredictionParams
,
MobileNetV1
,
NetParams
,
PointwiseConvParams
,
PredictionLayerParams
}
from
'./types'
;
const
DEFAULT_MODEL_NAME
=
'
face_detection
_model'
const
DEFAULT_MODEL_NAME
=
'
ssd_mobilenetv1
_model'
function
extractorsFactory
(
weightMap
:
any
,
paramMappings
:
ParamMapping
[])
{
...
...
test/tests/e2e/expectedResults.ts
View file @
fd42e095
import
*
as
faceapi
from
'../../../src'
;
import
{
FaceLandmarks5
}
from
'../../../src/mtcnn/FaceLandmarks5'
;
import
{
Point
}
from
'../../../src/Point'
;
import
{
expectMaxDelta
,
expectPointClose
,
expectRectClose
}
from
'../../utils'
;
...
...
test/tests/e2e/faceDetectionNet.test.ts
View file @
fd42e095
...
...
@@ -79,7 +79,7 @@ describe('faceDetectionNet', () => {
it
(
'disposes all param tensors'
,
async
()
=>
{
await
expectAllTensorsReleased
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights
/uncompressed/face_detection
_model.weights'
)
const
res
=
await
fetch
(
'base/weights
_uncompressed/ssd_mobilenetv1
_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
const
net
=
faceapi
.
createFaceDetectionNet
(
weights
)
net
.
dispose
()
...
...
test/tests/e2e/faceLandmarkNet.test.ts
View file @
fd42e095
...
...
@@ -211,7 +211,7 @@ describe('faceLandmarkNet', () => {
it
(
'disposes all param tensors'
,
async
()
=>
{
await
expectAllTensorsReleased
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights
/
uncompressed/face_landmark_68_model.weights'
)
const
res
=
await
fetch
(
'base/weights
_
uncompressed/face_landmark_68_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
const
net
=
faceapi
.
createFaceLandmarkNet
(
weights
)
net
.
dispose
()
...
...
test/tests/e2e/faceRecognitionNet.test.ts
View file @
fd42e095
...
...
@@ -139,7 +139,7 @@ describe('faceRecognitionNet', () => {
it
(
'disposes all param tensors'
,
async
()
=>
{
await
expectAllTensorsReleased
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights
/
uncompressed/face_recognition_model.weights'
)
const
res
=
await
fetch
(
'base/weights
_
uncompressed/face_recognition_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
const
net
=
faceapi
.
createFaceRecognitionNet
(
weights
)
net
.
dispose
()
...
...
test/tests/e2e/mtcnn.test.ts
View file @
fd42e095
...
...
@@ -67,7 +67,7 @@ describe('mtcnn', () => {
it
(
'disposes all param tensors'
,
async
()
=>
{
await
expectAllTensorsReleased
(
async
()
=>
{
const
res
=
await
fetch
(
'base/weights
/
uncompressed/mtcnn_model.weights'
)
const
res
=
await
fetch
(
'base/weights
_
uncompressed/mtcnn_model.weights'
)
const
weights
=
new
Float32Array
(
await
res
.
arrayBuffer
())
const
net
=
faceapi
.
createMtcnn
(
weights
)
net
.
dispose
()
...
...
test/utils.ts
View file @
fd42e095
...
...
@@ -83,7 +83,7 @@ async function initNet<TNet extends NeuralNetwork<any>>(
)
{
await
net
.
load
(
uncompressedFilename
?
await
loadNetWeights
(
`base/weights
/
uncompressed/
${
uncompressedFilename
}
`
)
?
await
loadNetWeights
(
`base/weights
_
uncompressed/
${
uncompressedFilename
}
`
)
:
'base/weights'
)
}
...
...
@@ -115,7 +115,7 @@ export function describeWithNets(
if
(
withFaceDetectionNet
||
withAllFaces
)
{
await
initNet
<
faceapi
.
FaceDetectionNet
>
(
faceDetectionNet
,
!!
withFaceDetectionNet
&&
!
withFaceDetectionNet
.
quantized
&&
'
face_detection
_model.weights'
!!
withFaceDetectionNet
&&
!
withFaceDetectionNet
.
quantized
&&
'
ssd_mobilenetv1
_model.weights'
)
}
if
(
withFaceLandmarkNet
||
withAllFaces
)
{
...
...
weights/face_detection_model-weights_manifest.json
deleted
100644 → 0
View file @
b09fbe45
[{
"paths"
:[
"face_detection_model-shard1"
,
"face_detection_model-shard2"
],
"weights"
:[{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
9
],
"quantization"
:{
"scale"
:
0.0026856216729856004
,
"min"
:
-0.34107395246917127
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
9
],
"quantization"
:{
"scale"
:
0.00198518248165355
,
"min"
:
-0.32159956202787515
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
18
],
"quantization"
:{
"scale"
:
0.003060340296988394
,
"min"
:
-0.489654447518143
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.0008040678851744708
,
"min"
:
-0.12221831854651957
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
18
],
"quantization"
:{
"scale"
:
0.0012513800578958848
,
"min"
:
-0.16017664741067325
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.000338070518245884
,
"min"
:
-0.05510549447407909
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
18
],
"quantization"
:{
"scale"
:
0.0011819932975021064
,
"min"
:
-0.1453851755927591
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.00015985782386041154
,
"min"
:
-0.026536398760828316
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
18
],
"quantization"
:{
"scale"
:
0.0007035591438704846
,
"min"
:
-0.08513065640832863
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.00008793946574716008
,
"min"
:
-0.013190919862074012
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
18
],
"quantization"
:{
"scale"
:
0.00081320781918133
,
"min"
:
-0.11059626340866088
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.0000980533805547976
,
"min"
:
-0.014609953702664841
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/ClassPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
3
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack_1/2"
},{
"dtype"
:
"int32"
,
"shape"
:[
3
],
"quantization"
:{
"scale"
:
0.00392156862745098
,
"min"
:
0
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/Slice/begin"
},{
"dtype"
:
"int32"
,
"shape"
:[
3
],
"quantization"
:{
"scale"
:
1
,
"min"
:
-1
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/Slice/size"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
12
],
"quantization"
:{
"scale"
:
0.003730384859384275
,
"min"
:
-0.4327246436885759
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
12
],
"quantization"
:{
"scale"
:
0.0018744708568442102
,
"min"
:
-0.3917644090804399
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
3072
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
24
],
"quantization"
:{
"scale"
:
0.00157488017689948
,
"min"
:
-0.20000978246623397
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.0002823906713256649
,
"min"
:
-0.043488163384152394
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1536
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
24
],
"quantization"
:{
"scale"
:
0.0007974451663447361
,
"min"
:
-0.11004743295557358
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.0001350417988849621
,
"min"
:
-0.02039131163162928
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
384
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
24
],
"quantization"
:{
"scale"
:
0.0007113990246080885
,
"min"
:
-0.0860792819775787
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.000050115815418608046
,
"min"
:
-0.007617603943628423
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
96
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
24
],
"quantization"
:{
"scale"
:
0.000590049314732645
,
"min"
:
-0.06903576982371946
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.00003513663861097074
,
"min"
:
-0.006359731588585704
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
24
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
24
],
"quantization"
:{
"scale"
:
0.0005990567744946948
,
"min"
:
-0.07907549423329971
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.00003392884288640583
,
"min"
:
-0.006039334033780238
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/BoxEncodingPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
0.007843137718737125
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/mul/x"
},{
"dtype"
:
"int32"
,
"shape"
:[
2
],
"quantization"
:{
"scale"
:
1
,
"min"
:
512
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/ResizeImage/size"
},{
"dtype"
:
"float32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/sub/y"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
3
,
32
],
"quantization"
:{
"scale"
:
0.03948551065781537
,
"min"
:
-5.014659853542552
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_0_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.0498106133704092
,
"min"
:
-7.371970778820562
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_0_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
32
,
1
],
"quantization"
:{
"scale"
:
0.036833542468501075
,
"min"
:
-4.714693435968138
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.012173276705046495
,
"min"
:
-0.012173276705046495
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.032182769214405736
,
"min"
:
-2.4780732295092416
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.028287527607936486
,
"min"
:
-3.366215785344442
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.04716738532571232
,
"min"
:
3.9071404665769224e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
32
,
64
],
"quantization"
:{
"scale"
:
0.04010109433940812
,
"min"
:
-4.290817094316669
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.2212210038129021
,
"min"
:
-34.51047659481273
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
64
,
1
],
"quantization"
:{
"scale"
:
0.010024750933927648
,
"min"
:
-1.343316625146305
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.006120916675118839
,
"min"
:
0.5227176547050476
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.02317035385206634
,
"min"
:
-0.7646216771181892
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.04980821422502106
,
"min"
:
-5.8275610643274645
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.051751047022202436
,
"min"
:
3.916113799002297e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
64
,
128
],
"quantization"
:{
"scale"
:
0.021979344124887504
,
"min"
:
-2.1319963801140878
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.09958663267247816
,
"min"
:
-11.054116226645077
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
1
],
"quantization"
:{
"scale"
:
0.01943492702409333
,
"min"
:
-2.6237151482525993
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.017852897737540452
,
"min"
:
0.40204083919525146
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.029888209174661076
,
"min"
:
-1.972621805527631
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.029319268581913967
,
"min"
:
-5.130872001834945
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.014018708584355373
,
"min"
:
3.9083178263362604e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
128
],
"quantization"
:{
"scale"
:
0.020776657964669022
,
"min"
:
-2.5347522716896207
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.14383157094319662
,
"min"
:
-9.636715253194174
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
1
],
"quantization"
:{
"scale"
:
0.004463558571011412
,
"min"
:
-0.5981168485155293
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.006487431245691636
,
"min"
:
0.47910428047180176
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.026542164297664865
,
"min"
:
-1.2209395576925839
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.05119945675719018
,
"min"
:
-8.60150873520795
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.03081628388049556
,
"min"
:
3.911508751095344e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
256
],
"quantization"
:{
"scale"
:
0.010758659886378868
,
"min"
:
-1.0328313490923713
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.08058219610476026
,
"min"
:
-9.34753474815219
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
1
],
"quantization"
:{
"scale"
:
0.01145936741548426
,
"min"
:
-1.3292866201961742
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.0083988838336047
,
"min"
:
0.36280909180641174
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.02858148649627087
,
"min"
:
-3.6584302715226715
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.03988401375564874
,
"min"
:
-7.099354448505476
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.009090481683904049
,
"min"
:
0.020878996700048447
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
256
],
"quantization"
:{
"scale"
:
0.008951201625898773
,
"min"
:
-1.1189002032373465
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.051758006974762565
,
"min"
:
-5.745138774198645
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
1
],
"quantization"
:{
"scale"
:
0.004110433190476661
,
"min"
:
-0.6042336790000691
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.013170199768216002
,
"min"
:
0.3386639356613159
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.03599378548416437
,
"min"
:
-3.70735990486893
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.026967673208199296
,
"min"
:
-3.748506575939702
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.012615410486857097
,
"min"
:
3.9111388979838637e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
512
],
"quantization"
:{
"scale"
:
0.00822840648538926
,
"min"
:
-1.1848905338960536
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.06608965817619772
,
"min"
:
-7.468131373910342
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.008801074355256323
,
"min"
:
-0.9593171047229393
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030577416513480393
,
"min"
:
0.3285980224609375
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04778536441279393
,
"min"
:
-8.935863145192464
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04331884945140165
,
"min"
:
-9.660103427662568
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04126455444367785
,
"min"
:
0.000604183878749609
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.009305818408143287
,
"min"
:
-1.1446156642016243
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04640720217835669
,
"min"
:
-4.733534622192383
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.008138792655047248
,
"min"
:
-0.9766551186056698
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.027351748358969596
,
"min"
:
0.34030041098594666
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04415061053107767
,
"min"
:
-7.019947074441349
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.02476683784933651
,
"min"
:
-2.9224868662217083
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.02547598832684076
,
"min"
:
0.00026032101595774293
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.01083052625843123
,
"min"
:
-1.2563410459780227
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.06360894371481503
,
"min"
:
-7.951117964351878
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006704086883395326
,
"min"
:
-0.8648272079579971
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.015343831567203297
,
"min"
:
0.2711026668548584
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.03378283930759804
,
"min"
:
-4.797163181678922
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.021910778213949763
,
"min"
:
-3.987761634938857
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.009284070410007296
,
"min"
:
0.000021581046894425526
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.012783036979974485
,
"min"
:
-1.9046725100161983
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.07273082733154297
,
"min"
:
-9.52773838043213
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006126228033327589
,
"min"
:
-0.7351473639993107
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.029703759212119908
,
"min"
:
0.28687000274658203
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04394429898729511
,
"min"
:
-6.3279790541704966
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.016566915605582443
,
"min"
:
-2.7501079905266854
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.012152872833551145
,
"min"
:
3.913338286370366e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.01354524388032801
,
"min"
:
-1.7473364605623134
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.08566816367355047
,
"min"
:
-9.937506986131854
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006012305558896532
,
"min"
:
-0.7876120282154457
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.01469323155926723
,
"min"
:
0.29223933815956116
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030889174517463234
,
"min"
:
-3.2433633243336395
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.014836942448335536
,
"min"
:
-2.047498057870304
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.007234466105343445
,
"min"
:
0.00013165915152058005
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.016261722527298274
,
"min"
:
-1.4798167499841428
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.091437328563017
,
"min"
:
-14.172785927267636
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.004750356487199372
,
"min"
:
-0.650798838746314
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.008174965545242907
,
"min"
:
0.3120670020580292
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030133422215779623
,
"min"
:
-2.41067377726237
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.006088157261119169
,
"min"
:
-0.7853722866843729
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.003668997334498985
,
"min"
:
3.9124486300013356e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
1024
],
"quantization"
:{
"scale"
:
0.010959514449624454
,
"min"
:
-1.4028178495519301
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.10896045834410424
,
"min"
:
-14.818622334798176
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
1024
,
1
],
"quantization"
:{
"scale"
:
0.004633033509347953
,
"min"
:
-0.5652300881404502
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.022285057224479377
,
"min"
:
0.23505790531635284
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.0324854850769043
,
"min"
:
-3.9957146644592285
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.014760061806323482
,
"min"
:
-2.125448900110581
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.0036057423142825855
,
"min"
:
3.9067056828997994e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
1024
],
"quantization"
:{
"scale"
:
0.017311988157384536
,
"min"
:
-2.094750567043529
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.16447528764313343
,
"min"
:
-25.658144872328815
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
256
],
"quantization"
:{
"scale"
:
0.0026493051472832175
,
"min"
:
-0.36825341547236723
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_0_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.012474596734140433
,
"min"
:
-2.3078003958159803
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_0_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
512
],
"quantization"
:{
"scale"
:
0.014533351449405445
,
"min"
:
-1.8166689311756807
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_1_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.024268776762719248
,
"min"
:
-2.4754152297973633
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_1_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
128
],
"quantization"
:{
"scale"
:
0.002208403746287028
,
"min"
:
-0.28709248701731366
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_2_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.012451349052728392
,
"min"
:
-1.5937726787492341
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_2_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
256
],
"quantization"
:{
"scale"
:
0.026334229637594783
,
"min"
:
-2.8967652601354263
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_3_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.02509917792151956
,
"min"
:
-1.4055539636050953
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_3_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
128
],
"quantization"
:{
"scale"
:
0.004565340046789132
,
"min"
:
-0.3971845840706545
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_4_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.017302456556581983
,
"min"
:
-2.5953684834872974
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_4_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
256
],
"quantization"
:{
"scale"
:
0.025347338470758176
,
"min"
:
-3.8527954475552426
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_5_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.033134659598855414
,
"min"
:
-2.9158500446992766
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_5_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
64
],
"quantization"
:{
"scale"
:
0.002493104397081861
,
"min"
:
-0.2817207968702503
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_6_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.011383360974928912
,
"min"
:
-1.2749364291920382
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_6_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
64
,
128
],
"quantization"
:{
"scale"
:
0.020821522731407017
,
"min"
:
-2.7484410005457263
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_7_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.052144218893612135
,
"min"
:
-3.5979511036592373
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_7_pointwise/convolution_bn_offset"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
6
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/stack_1/1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"concat_1/axis"
},{
"dtype"
:
"int32"
,
"shape"
:[
1
],
"quantization"
:{
"scale"
:
1
,
"min"
:
0
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/strided_slice/stack"
},{
"dtype"
:
"int32"
,
"shape"
:[
1
],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/strided_slice/stack_1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
5118
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/stack/1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
4
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack/3"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
5118
,
4
],
"name"
:
"Output/extra_dim"
}]}]
\ No newline at end of file
weights/
face_detection
_model-shard1
→
weights/
ssd_mobilenetv1
_model-shard1
View file @
fd42e095
File moved
weights/
face_detection
_model-shard2
→
weights/
ssd_mobilenetv1
_model-shard2
View file @
fd42e095
File moved
weights/ssd_mobilenetv1_model-weights_manifest.json
0 → 100644
View file @
fd42e095
[{
"paths"
:[
"ssd_mobilenetv1_model-shard1"
,
"ssd_mobilenetv1_model-shard2"
],
"weights"
:[{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
9
],
"quantization"
:{
"scale"
:
0.0026856216729856004
,
"min"
:
-0.34107395246917127
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
9
],
"quantization"
:{
"scale"
:
0.00198518248165355
,
"min"
:
-0.32159956202787515
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
18
],
"quantization"
:{
"scale"
:
0.003060340296988394
,
"min"
:
-0.489654447518143
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.0008040678851744708
,
"min"
:
-0.12221831854651957
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
18
],
"quantization"
:{
"scale"
:
0.0012513800578958848
,
"min"
:
-0.16017664741067325
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.000338070518245884
,
"min"
:
-0.05510549447407909
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
18
],
"quantization"
:{
"scale"
:
0.0011819932975021064
,
"min"
:
-0.1453851755927591
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.00015985782386041154
,
"min"
:
-0.026536398760828316
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
18
],
"quantization"
:{
"scale"
:
0.0007035591438704846
,
"min"
:
-0.08513065640832863
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.00008793946574716008
,
"min"
:
-0.013190919862074012
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/ClassPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
18
],
"quantization"
:{
"scale"
:
0.00081320781918133
,
"min"
:
-0.11059626340866088
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/ClassPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
18
],
"quantization"
:{
"scale"
:
0.0000980533805547976
,
"min"
:
-0.014609953702664841
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/ClassPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
3
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack_1/2"
},{
"dtype"
:
"int32"
,
"shape"
:[
3
],
"quantization"
:{
"scale"
:
0.00392156862745098
,
"min"
:
0
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/Slice/begin"
},{
"dtype"
:
"int32"
,
"shape"
:[
3
],
"quantization"
:{
"scale"
:
1
,
"min"
:
-1
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/Slice/size"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
12
],
"quantization"
:{
"scale"
:
0.003730384859384275
,
"min"
:
-0.4327246436885759
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
12
],
"quantization"
:{
"scale"
:
0.0018744708568442102
,
"min"
:
-0.3917644090804399
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
3072
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
24
],
"quantization"
:{
"scale"
:
0.00157488017689948
,
"min"
:
-0.20000978246623397
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.0002823906713256649
,
"min"
:
-0.043488163384152394
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1536
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_1/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
24
],
"quantization"
:{
"scale"
:
0.0007974451663447361
,
"min"
:
-0.11004743295557358
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.0001350417988849621
,
"min"
:
-0.02039131163162928
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
384
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_2/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
24
],
"quantization"
:{
"scale"
:
0.0007113990246080885
,
"min"
:
-0.0860792819775787
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.000050115815418608046
,
"min"
:
-0.007617603943628423
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
96
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_3/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
24
],
"quantization"
:{
"scale"
:
0.000590049314732645
,
"min"
:
-0.06903576982371946
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.00003513663861097074
,
"min"
:
-0.006359731588585704
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/BoxEncodingPredictor/biases"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
24
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_4/stack_1/1"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
24
],
"quantization"
:{
"scale"
:
0.0005990567744946948
,
"min"
:
-0.07907549423329971
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/BoxEncodingPredictor/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
24
],
"quantization"
:{
"scale"
:
0.00003392884288640583
,
"min"
:
-0.006039334033780238
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/BoxEncodingPredictor/biases"
},{
"dtype"
:
"float32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
0.007843137718737125
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/mul/x"
},{
"dtype"
:
"int32"
,
"shape"
:[
2
],
"quantization"
:{
"scale"
:
1
,
"min"
:
512
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/ResizeImage/size"
},{
"dtype"
:
"float32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"Preprocessor/sub/y"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
3
,
32
],
"quantization"
:{
"scale"
:
0.03948551065781537
,
"min"
:
-5.014659853542552
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_0_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.0498106133704092
,
"min"
:
-7.371970778820562
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_0_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
32
,
1
],
"quantization"
:{
"scale"
:
0.036833542468501075
,
"min"
:
-4.714693435968138
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.012173276705046495
,
"min"
:
-0.012173276705046495
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.032182769214405736
,
"min"
:
-2.4780732295092416
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.028287527607936486
,
"min"
:
-3.366215785344442
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
32
],
"quantization"
:{
"scale"
:
0.04716738532571232
,
"min"
:
3.9071404665769224e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
32
,
64
],
"quantization"
:{
"scale"
:
0.04010109433940812
,
"min"
:
-4.290817094316669
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.2212210038129021
,
"min"
:
-34.51047659481273
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_1_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
64
,
1
],
"quantization"
:{
"scale"
:
0.010024750933927648
,
"min"
:
-1.343316625146305
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.006120916675118839
,
"min"
:
0.5227176547050476
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.02317035385206634
,
"min"
:
-0.7646216771181892
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.04980821422502106
,
"min"
:
-5.8275610643274645
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.051751047022202436
,
"min"
:
3.916113799002297e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
64
,
128
],
"quantization"
:{
"scale"
:
0.021979344124887504
,
"min"
:
-2.1319963801140878
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.09958663267247816
,
"min"
:
-11.054116226645077
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_2_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
1
],
"quantization"
:{
"scale"
:
0.01943492702409333
,
"min"
:
-2.6237151482525993
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.017852897737540452
,
"min"
:
0.40204083919525146
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.029888209174661076
,
"min"
:
-1.972621805527631
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.029319268581913967
,
"min"
:
-5.130872001834945
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.014018708584355373
,
"min"
:
3.9083178263362604e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
128
],
"quantization"
:{
"scale"
:
0.020776657964669022
,
"min"
:
-2.5347522716896207
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.14383157094319662
,
"min"
:
-9.636715253194174
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_3_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
1
],
"quantization"
:{
"scale"
:
0.004463558571011412
,
"min"
:
-0.5981168485155293
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.006487431245691636
,
"min"
:
0.47910428047180176
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.026542164297664865
,
"min"
:
-1.2209395576925839
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.05119945675719018
,
"min"
:
-8.60150873520795
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.03081628388049556
,
"min"
:
3.911508751095344e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
128
,
256
],
"quantization"
:{
"scale"
:
0.010758659886378868
,
"min"
:
-1.0328313490923713
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.08058219610476026
,
"min"
:
-9.34753474815219
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_4_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
1
],
"quantization"
:{
"scale"
:
0.01145936741548426
,
"min"
:
-1.3292866201961742
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.0083988838336047
,
"min"
:
0.36280909180641174
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.02858148649627087
,
"min"
:
-3.6584302715226715
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.03988401375564874
,
"min"
:
-7.099354448505476
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.009090481683904049
,
"min"
:
0.020878996700048447
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
256
],
"quantization"
:{
"scale"
:
0.008951201625898773
,
"min"
:
-1.1189002032373465
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.051758006974762565
,
"min"
:
-5.745138774198645
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_5_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
1
],
"quantization"
:{
"scale"
:
0.004110433190476661
,
"min"
:
-0.6042336790000691
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.013170199768216002
,
"min"
:
0.3386639356613159
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.03599378548416437
,
"min"
:
-3.70735990486893
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.026967673208199296
,
"min"
:
-3.748506575939702
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.012615410486857097
,
"min"
:
3.9111388979838637e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
512
],
"quantization"
:{
"scale"
:
0.00822840648538926
,
"min"
:
-1.1848905338960536
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.06608965817619772
,
"min"
:
-7.468131373910342
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_6_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.008801074355256323
,
"min"
:
-0.9593171047229393
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030577416513480393
,
"min"
:
0.3285980224609375
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04778536441279393
,
"min"
:
-8.935863145192464
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04331884945140165
,
"min"
:
-9.660103427662568
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04126455444367785
,
"min"
:
0.000604183878749609
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.009305818408143287
,
"min"
:
-1.1446156642016243
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04640720217835669
,
"min"
:
-4.733534622192383
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_7_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.008138792655047248
,
"min"
:
-0.9766551186056698
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.027351748358969596
,
"min"
:
0.34030041098594666
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04415061053107767
,
"min"
:
-7.019947074441349
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.02476683784933651
,
"min"
:
-2.9224868662217083
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.02547598832684076
,
"min"
:
0.00026032101595774293
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.01083052625843123
,
"min"
:
-1.2563410459780227
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.06360894371481503
,
"min"
:
-7.951117964351878
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_8_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006704086883395326
,
"min"
:
-0.8648272079579971
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.015343831567203297
,
"min"
:
0.2711026668548584
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.03378283930759804
,
"min"
:
-4.797163181678922
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.021910778213949763
,
"min"
:
-3.987761634938857
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.009284070410007296
,
"min"
:
0.000021581046894425526
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.012783036979974485
,
"min"
:
-1.9046725100161983
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.07273082733154297
,
"min"
:
-9.52773838043213
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_9_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006126228033327589
,
"min"
:
-0.7351473639993107
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.029703759212119908
,
"min"
:
0.28687000274658203
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.04394429898729511
,
"min"
:
-6.3279790541704966
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.016566915605582443
,
"min"
:
-2.7501079905266854
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.012152872833551145
,
"min"
:
3.913338286370366e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.01354524388032801
,
"min"
:
-1.7473364605623134
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.08566816367355047
,
"min"
:
-9.937506986131854
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_10_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.006012305558896532
,
"min"
:
-0.7876120282154457
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.01469323155926723
,
"min"
:
0.29223933815956116
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030889174517463234
,
"min"
:
-3.2433633243336395
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.014836942448335536
,
"min"
:
-2.047498057870304
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.007234466105343445
,
"min"
:
0.00013165915152058005
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
512
],
"quantization"
:{
"scale"
:
0.016261722527298274
,
"min"
:
-1.4798167499841428
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.091437328563017
,
"min"
:
-14.172785927267636
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_11_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
512
,
1
],
"quantization"
:{
"scale"
:
0.004750356487199372
,
"min"
:
-0.650798838746314
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.008174965545242907
,
"min"
:
0.3120670020580292
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.030133422215779623
,
"min"
:
-2.41067377726237
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.006088157261119169
,
"min"
:
-0.7853722866843729
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.003668997334498985
,
"min"
:
3.9124486300013356e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
1024
],
"quantization"
:{
"scale"
:
0.010959514449624454
,
"min"
:
-1.4028178495519301
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.10896045834410424
,
"min"
:
-14.818622334798176
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_12_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
1024
,
1
],
"quantization"
:{
"scale"
:
0.004633033509347953
,
"min"
:
-0.5652300881404502
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/depthwise_weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.022285057224479377
,
"min"
:
0.23505790531635284
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/gamma"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.0324854850769043
,
"min"
:
-3.9957146644592285
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/beta"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.014760061806323482
,
"min"
:
-2.125448900110581
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/moving_mean"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.0036057423142825855
,
"min"
:
3.9067056828997994e-36
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_depthwise/BatchNorm/moving_variance"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
1024
],
"quantization"
:{
"scale"
:
0.017311988157384536
,
"min"
:
-2.094750567043529
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
1024
],
"quantization"
:{
"scale"
:
0.16447528764313343
,
"min"
:
-25.658144872328815
,
"dtype"
:
"uint8"
},
"name"
:
"MobilenetV1/Conv2d_13_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
1024
,
256
],
"quantization"
:{
"scale"
:
0.0026493051472832175
,
"min"
:
-0.36825341547236723
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_0_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.012474596734140433
,
"min"
:
-2.3078003958159803
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_0_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
256
,
512
],
"quantization"
:{
"scale"
:
0.014533351449405445
,
"min"
:
-1.8166689311756807
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_1_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
512
],
"quantization"
:{
"scale"
:
0.024268776762719248
,
"min"
:
-2.4754152297973633
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_1_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
512
,
128
],
"quantization"
:{
"scale"
:
0.002208403746287028
,
"min"
:
-0.28709248701731366
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_2_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.012451349052728392
,
"min"
:
-1.5937726787492341
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_2_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
256
],
"quantization"
:{
"scale"
:
0.026334229637594783
,
"min"
:
-2.8967652601354263
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_3_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.02509917792151956
,
"min"
:
-1.4055539636050953
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_3_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
128
],
"quantization"
:{
"scale"
:
0.004565340046789132
,
"min"
:
-0.3971845840706545
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_4_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.017302456556581983
,
"min"
:
-2.5953684834872974
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_4_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
128
,
256
],
"quantization"
:{
"scale"
:
0.025347338470758176
,
"min"
:
-3.8527954475552426
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_5_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
256
],
"quantization"
:{
"scale"
:
0.033134659598855414
,
"min"
:
-2.9158500446992766
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_5_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
1
,
256
,
64
],
"quantization"
:{
"scale"
:
0.002493104397081861
,
"min"
:
-0.2817207968702503
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_6_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
64
],
"quantization"
:{
"scale"
:
0.011383360974928912
,
"min"
:
-1.2749364291920382
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_6_pointwise/convolution_bn_offset"
},{
"dtype"
:
"float32"
,
"shape"
:[
3
,
3
,
64
,
128
],
"quantization"
:{
"scale"
:
0.020821522731407017
,
"min"
:
-2.7484410005457263
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_7_pointwise/weights"
},{
"dtype"
:
"float32"
,
"shape"
:[
128
],
"quantization"
:{
"scale"
:
0.052144218893612135
,
"min"
:
-3.5979511036592373
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/Conv2d_7_pointwise/convolution_bn_offset"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
6
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_5/stack_1/1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"concat_1/axis"
},{
"dtype"
:
"int32"
,
"shape"
:[
1
],
"quantization"
:{
"scale"
:
1
,
"min"
:
0
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/strided_slice/stack"
},{
"dtype"
:
"int32"
,
"shape"
:[
1
],
"quantization"
:{
"scale"
:
1
,
"min"
:
1
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/strided_slice/stack_1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
5118
,
"dtype"
:
"uint8"
},
"name"
:
"Postprocessor/stack/1"
},{
"dtype"
:
"int32"
,
"shape"
:[],
"quantization"
:{
"scale"
:
1
,
"min"
:
4
,
"dtype"
:
"uint8"
},
"name"
:
"Prediction/BoxPredictor_0/stack/3"
},{
"dtype"
:
"float32"
,
"shape"
:[
1
,
5118
,
4
],
"name"
:
"Output/extra_dim"
}]}]
\ No newline at end of file
weights/uncompressed/face_detection_model.weights
deleted
100644 → 0
View file @
b09fbe45
File deleted
weights/uncompressed/face_landmark_68_model.weights
deleted
100644 → 0
View file @
b09fbe45
File deleted
weights/uncompressed/face_recognition_model.weights
deleted
100644 → 0
View file @
b09fbe45
File deleted
weights/uncompressed/mtcnn_model.weights
deleted
100644 → 0
View file @
b09fbe45
File deleted
weights/uncompressed/tiny_yolov2_model.weights
deleted
100644 → 0
View file @
b09fbe45
File deleted
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment