Commit f4be2ce1 by vincent

update readme

parent d5de3f5b
......@@ -43,7 +43,8 @@ Table of Contents:
### Face Landmarks
![preview_face_landmarks_boxes](https://user-images.githubusercontent.com/31125521/41507933-65f9b642-723c-11e8-8f4e-aab13303e7ff.jpg)
![face_landmarks_boxes_1](https://user-images.githubusercontent.com/31125521/46063403-fff9f480-c16c-11e8-900f-e4b7a3828d1d.jpg)
![face_landmarks_boxes_2](https://user-images.githubusercontent.com/31125521/46063404-00928b00-c16d-11e8-8f29-e9c50afd2bc8.jpg)
![preview_face_landmarks](https://user-images.githubusercontent.com/31125521/41507950-e121b05e-723c-11e8-89f2-d8f9348a8e86.png)
......@@ -57,10 +58,6 @@ Table of Contents:
![mtcnn-preview](https://user-images.githubusercontent.com/31125521/42756818-0a41edaa-88fe-11e8-9033-8cd141b0fa09.gif)
### Face Alignment
![preview_face_alignment](https://user-images.githubusercontent.com/31125521/41526994-1a690818-72e6-11e8-8f3c-d2cf31fe517b.jpg)
<a name="running-the-examples"></a>
## Running the Examples
......@@ -113,9 +110,7 @@ The neural net is equivalent to the **FaceRecognizerNet** used in [face-recognit
### 68 Point Face Landmark Detection
This package implements a CNN to detect the 68 point face landmarks for a given face image.
The model has been trained on a variety of public datasets and the model weights are provided by [yinguobing](https://github.com/yinguobing) in [this](https://github.com/yinguobing/head-pose-estimation) repo.
This package implements a very lightweight and fast, yet accurate 68 point face landmark detector. The default model has a size of only 350kb and the tiny model is only 80kb. Both models employ the idea of depthwise separable convolutions as well as densely connected blocks. The models have been trained on a dataset of ~35k face images labeled with 68 face landmark points.
<a name="usage"></a>
......@@ -145,6 +140,7 @@ Assuming the models reside in **public/models**:
await faceapi.loadFaceDetectionModel('/models')
// accordingly for the other models:
// await faceapi.loadFaceLandmarkModel('/models')
// await faceapi.loadFaceLandmarkTinyModel('/models')
// await faceapi.loadFaceRecognitionModel('/models')
// await faceapi.loadMtcnnModel('/models')
// await faceapi.loadTinyYolov2Model('/models')
......@@ -156,18 +152,17 @@ As an alternative, you can also create instance of the neural nets:
const net = new faceapi.FaceDetectionNet()
// accordingly for the other models:
// const net = new faceapi.FaceLandmarkNet()
// const net = new faceapi.FaceLandmarkTinyNet()
// const net = new faceapi.FaceRecognitionNet()
// const net = new faceapi.Mtcnn()
// const net = new faceapi.TinyYolov2()
await net.load('/models/face_detection_model-weights_manifest.json')
// await net.load('/models/face_landmark_68_model-weights_manifest.json')
// await net.load('/models/face_landmark_68_tiny_model-weights_manifest.json')
// await net.load('/models/face_recognition_model-weights_manifest.json')
// await net.load('/models/mtcnn_model-weights_manifest.json')
// await net.load('/models/tiny_yolov2_separable_conv_model-weights_manifest.json')
// or simply load all models
await net.load('/models')
```
Using instances, you can also load the weights as a Float32Array (in case you want to use the uncompressed models):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment