Commit f0ae9c70 by vincent

check in latest build

parent 1c56acb1
......@@ -3,10 +3,10 @@ import { TinyYolov2Types } from 'tfjs-tiny-yolov2';
import { TinyYolov2 } from '.';
import { FullFaceDescription } from './classes/FullFaceDescription';
import { FaceDetectionNet } from './faceDetectionNet/FaceDetectionNet';
import { FaceLandmarkNet } from './faceLandmarkNet/FaceLandmarkNet';
import { FaceLandmark68Net } from './faceLandmarkNet/FaceLandmark68Net';
import { FaceRecognitionNet } from './faceRecognitionNet/FaceRecognitionNet';
import { Mtcnn } from './mtcnn/Mtcnn';
import { MtcnnForwardParams } from './mtcnn/types';
export declare function allFacesSsdMobilenetv1Factory(ssdMobilenetv1: FaceDetectionNet, landmarkNet: FaceLandmarkNet, recognitionNet: FaceRecognitionNet): (input: TNetInput, minConfidence?: number, useBatchProcessing?: boolean) => Promise<FullFaceDescription[]>;
export declare function allFacesTinyYolov2Factory(tinyYolov2: TinyYolov2, landmarkNet: FaceLandmarkNet, recognitionNet: FaceRecognitionNet): (input: TNetInput, forwardParams?: TinyYolov2Types.TinyYolov2ForwardParams, useBatchProcessing?: boolean) => Promise<FullFaceDescription[]>;
export declare function allFacesSsdMobilenetv1Factory(ssdMobilenetv1: FaceDetectionNet, landmarkNet: FaceLandmark68Net, recognitionNet: FaceRecognitionNet): (input: TNetInput, minConfidence?: number, useBatchProcessing?: boolean) => Promise<FullFaceDescription[]>;
export declare function allFacesTinyYolov2Factory(tinyYolov2: TinyYolov2, landmarkNet: FaceLandmark68Net, recognitionNet: FaceRecognitionNet): (input: TNetInput, forwardParams?: TinyYolov2Types.TinyYolov2ForwardParams, useBatchProcessing?: boolean) => Promise<FullFaceDescription[]>;
export declare function allFacesMtcnnFactory(mtcnn: Mtcnn, recognitionNet: FaceRecognitionNet): (input: TNetInput, mtcnnForwardParams?: MtcnnForwardParams, useBatchProcessing?: boolean) => Promise<FullFaceDescription[]>;
......@@ -7,24 +7,23 @@ var dom_1 = require("./dom");
function computeDescriptorsFactory(recognitionNet) {
return function (input, alignedFaceBoxes, useBatchProcessing) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var alignedFaceTensors, descriptors, _a;
var alignedFaceCanvases, descriptors, _a;
return tslib_1.__generator(this, function (_b) {
switch (_b.label) {
case 0: return [4 /*yield*/, dom_1.extractFaceTensors(input, alignedFaceBoxes)];
case 0: return [4 /*yield*/, dom_1.extractFaces(input, alignedFaceBoxes)];
case 1:
alignedFaceTensors = _b.sent();
alignedFaceCanvases = _b.sent();
if (!useBatchProcessing) return [3 /*break*/, 3];
return [4 /*yield*/, recognitionNet.computeFaceDescriptor(alignedFaceTensors)];
return [4 /*yield*/, recognitionNet.computeFaceDescriptor(alignedFaceCanvases)];
case 2:
_a = _b.sent();
return [3 /*break*/, 5];
case 3: return [4 /*yield*/, Promise.all(alignedFaceTensors.map(function (faceTensor) { return recognitionNet.computeFaceDescriptor(faceTensor); }))];
case 3: return [4 /*yield*/, Promise.all(alignedFaceCanvases.map(function (canvas) { return recognitionNet.computeFaceDescriptor(canvas); }))];
case 4:
_a = _b.sent();
_b.label = 5;
case 5:
descriptors = _a;
alignedFaceTensors.forEach(function (t) { return t.dispose(); });
return [2 /*return*/, descriptors];
}
});
......@@ -36,27 +35,26 @@ function allFacesFactory(detectFaces, landmarkNet, recognitionNet) {
return function (input, useBatchProcessing) {
if (useBatchProcessing === void 0) { useBatchProcessing = false; }
return tslib_1.__awaiter(this, void 0, void 0, function () {
var detections, faceTensors, faceLandmarksByFace, _a, alignedFaceBoxes, descriptors;
var detections, faceCanvases, faceLandmarksByFace, _a, alignedFaceBoxes, descriptors;
return tslib_1.__generator(this, function (_b) {
switch (_b.label) {
case 0: return [4 /*yield*/, detectFaces(input)];
case 1:
detections = _b.sent();
return [4 /*yield*/, dom_1.extractFaceTensors(input, detections)];
return [4 /*yield*/, dom_1.extractFaces(input, detections)];
case 2:
faceTensors = _b.sent();
faceCanvases = _b.sent();
if (!useBatchProcessing) return [3 /*break*/, 4];
return [4 /*yield*/, landmarkNet.detectLandmarks(faceTensors)];
return [4 /*yield*/, landmarkNet.detectLandmarks(faceCanvases)];
case 3:
_a = _b.sent();
return [3 /*break*/, 6];
case 4: return [4 /*yield*/, Promise.all(faceTensors.map(function (faceTensor) { return landmarkNet.detectLandmarks(faceTensor); }))];
case 4: return [4 /*yield*/, Promise.all(faceCanvases.map(function (canvas) { return landmarkNet.detectLandmarks(canvas); }))];
case 5:
_a = _b.sent();
_b.label = 6;
case 6:
faceLandmarksByFace = _a;
faceTensors.forEach(function (t) { return t.dispose(); });
alignedFaceBoxes = faceLandmarksByFace.map(function (landmarks, i) { return landmarks.align(detections[i].getBox()); });
return [4 /*yield*/, computeDescriptors(input, alignedFaceBoxes, useBatchProcessing)];
case 7:
......
{"version":3,"file":"allFacesFactory.js","sourceRoot":"","sources":["../src/allFacesFactory.ts"],"names":[],"mappings":";;;AAAA,2EAAqE;AAMrE,qEAAoE;AACpE,6BAA2C;AAO3C,mCACE,cAAkC;IAElC,OAAO,UAAe,KAAgB,EAAE,gBAAwB,EAAE,kBAA2B;;;;;4BAChE,qBAAM,wBAAkB,CAAC,KAAK,EAAE,gBAAgB,CAAC,EAAA;;wBAAtE,kBAAkB,GAAG,SAAiD;6BAExD,kBAAkB,EAAlB,wBAAkB;wBAClC,qBAAM,cAAc,CAAC,qBAAqB,CAAC,kBAAkB,CAAC,EAAA;;wBAA9D,KAAA,SAAgF,CAAA;;4BAChF,qBAAM,OAAO,CAAC,GAAG,CAAC,kBAAkB,CAAC,GAAG,CACxC,UAAA,UAAU,IAAI,OAAA,cAAc,CAAC,qBAAqB,CAAC,UAAU,CAAC,EAAhD,CAAgD,CAC/D,CAAC,EAAA;;wBAFA,KAAA,SAEkB,CAAA;;;wBAJhB,WAAW,KAIK;wBAEtB,kBAAkB,CAAC,OAAO,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,OAAO,EAAE,EAAX,CAAW,CAAC,CAAA;wBAE5C,sBAAO,WAAW,EAAA;;;;KACnB,CAAA;AACH,CAAC;AAED,yBACE,WAA2D,EAC3D,WAA4B,EAC5B,cAAkC;IAElC,IAAM,kBAAkB,GAAG,yBAAyB,CAAC,cAAc,CAAC,CAAA;IAEpE,OAAO,UACL,KAAgB,EAChB,kBAAmC;QAAnC,mCAAA,EAAA,0BAAmC;;;;;4BAGhB,qBAAM,WAAW,CAAC,KAAK,CAAC,EAAA;;wBAArC,UAAU,GAAG,SAAwB;wBACvB,qBAAM,wBAAkB,CAAC,KAAK,EAAE,UAAU,CAAC,EAAA;;wBAAzD,WAAW,GAAG,SAA2C;6BAEnC,kBAAkB,EAAlB,wBAAkB;wBAC1C,qBAAM,WAAW,CAAC,eAAe,CAAC,WAAW,CAAC,EAAA;;wBAA9C,KAAA,SAAmE,CAAA;;4BACnE,qBAAM,OAAO,CAAC,GAAG,CAAC,WAAW,CAAC,GAAG,CACjC,UAAA,UAAU,IAAI,OAAA,WAAW,CAAC,eAAe,CAAC,UAAU,CAAC,EAAvC,CAAuC,CACtD,CAAC,EAAA;;wBAFA,KAAA,SAEqB,CAAA;;;wBAJnB,mBAAmB,KAIA;wBAEzB,WAAW,CAAC,OAAO,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,OAAO,EAAE,EAAX,CAAW,CAAC,CAAA;wBAE/B,gBAAgB,GAAG,mBAAmB,CAAC,GAAG,CAC9C,UAAC,SAAS,EAAE,CAAC,IAAK,OAAA,SAAS,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,EAAvC,CAAuC,CAC1D,CAAA;wBAEmB,qBAAM,kBAAkB,CAAC,KAAK,EAAE,gBAAgB,EAAE,kBAAkB,CAAC,EAAA;;wBAAnF,WAAW,GAAG,SAAqE;wBAEzF,sBAAO,UAAU,CAAC,GAAG,CAAC,UAAC,SAAS,EAAE,CAAC;gCACjC,OAAA,IAAI,yCAAmB,CACrB,SAAS,EACT,mBAAmB,CAAC,CAAC,CAAC,CAAC,YAAY,CACjC,IAAI,mCAAK,CAAC,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE,SAAS,CAAC,GAAG,CAAC,CAAC,CAAC,CAC5C,EACD,WAAW,CAAC,CAAC,CAAC,CACf;4BAND,CAMC,CACF,EAAA;;;;KAEF,CAAA;AACH,CAAC;AAED,uCACE,cAAgC,EAChC,WAA4B,EAC5B,cAAkC;IAElC,OAAO,UACL,KAAgB,EAChB,aAA2B,EAC3B,kBAAmC;QADnC,8BAAA,EAAA,mBAA2B;QAC3B,mCAAA,EAAA,0BAAmC;;;;gBAE7B,WAAW,GAAG,UAAC,KAAgB,IAAK,OAAA,cAAc,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,EAAhD,CAAgD,CAAA;gBACpF,QAAQ,GAAG,eAAe,CAAC,WAAW,EAAE,WAAW,EAAE,cAAc,CAAC,CAAA;gBAC1E,sBAAO,QAAQ,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;;KAC3C,CAAA;AACH,CAAC;AAdD,sEAcC;AAED,mCACE,UAAsB,EACtB,WAA4B,EAC5B,cAAkC;IAElC,OAAO,UACL,KAAgB,EAChB,aAA2D,EAC3D,kBAAmC;QADnC,8BAAA,EAAA,kBAA2D;QAC3D,mCAAA,EAAA,0BAAmC;;;;gBAE7B,WAAW,GAAG,UAAC,KAAgB,IAAK,OAAA,UAAU,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,EAA5C,CAA4C,CAAA;gBAChF,QAAQ,GAAG,eAAe,CAAC,WAAW,EAAE,WAAW,EAAE,cAAc,CAAC,CAAA;gBAC1E,sBAAO,QAAQ,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;;KAC3C,CAAA;AACH,CAAC;AAdD,8DAcC;AAED,8BACE,KAAY,EACZ,cAAkC;IAElC,IAAM,kBAAkB,GAAG,yBAAyB,CAAC,cAAc,CAAC,CAAA;IAEpE,OAAO,UACL,KAAgB,EAChB,kBAA2C,EAC3C,kBAAmC;QADnC,mCAAA,EAAA,uBAA2C;QAC3C,mCAAA,EAAA,0BAAmC;;;;;4BAGnB,qBAAM,KAAK,CAAC,OAAO,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;wBAAxD,OAAO,GAAG,SAA8C;wBAExD,gBAAgB,GAAG,OAAO,CAAC,GAAG,CAClC,UAAC,EAAiB;gCAAf,gCAAa;4BAAO,OAAA,aAAa,CAAC,KAAK,EAAE;wBAArB,CAAqB,CAC7C,CAAA;wBAEmB,qBAAM,kBAAkB,CAAC,KAAK,EAAE,gBAAgB,EAAE,kBAAkB,CAAC,EAAA;;wBAAnF,WAAW,GAAG,SAAqE;wBAEzF,sBAAO,OAAO,CAAC,GAAG,CAAC,UAAC,EAAgC,EAAE,CAAC;oCAAjC,gCAAa,EAAE,gCAAa;gCAChD,OAAA,IAAI,yCAAmB,CACrB,aAAa,EACb,aAAa,EACb,WAAW,CAAC,CAAC,CAAC,CACf;4BAJD,CAIC,CACF,EAAA;;;;KAEF,CAAA;AACH,CAAC;AA7BD,oDA6BC"}
\ No newline at end of file
{"version":3,"file":"allFacesFactory.js","sourceRoot":"","sources":["../src/allFacesFactory.ts"],"names":[],"mappings":";;;AAAA,2EAAqE;AAMrE,qEAAoE;AACpE,6BAAqC;AAOrC,mCACE,cAAkC;IAElC,OAAO,UAAe,KAAgB,EAAE,gBAAwB,EAAE,kBAA2B;;;;;4BAC/D,qBAAM,kBAAY,CAAC,KAAK,EAAE,gBAAgB,CAAC,EAAA;;wBAAjE,mBAAmB,GAAG,SAA2C;6BAEnD,kBAAkB,EAAlB,wBAAkB;wBAClC,qBAAM,cAAc,CAAC,qBAAqB,CAAC,mBAAmB,CAAC,EAAA;;wBAA/D,KAAA,SAAiF,CAAA;;4BACjF,qBAAM,OAAO,CAAC,GAAG,CAAC,mBAAmB,CAAC,GAAG,CACzC,UAAA,MAAM,IAAI,OAAA,cAAc,CAAC,qBAAqB,CAAC,MAAM,CAAC,EAA5C,CAA4C,CACvD,CAAC,EAAA;;wBAFA,KAAA,SAEkB,CAAA;;;wBAJhB,WAAW,KAIK;wBAEtB,sBAAO,WAAW,EAAA;;;;KACnB,CAAA;AACH,CAAC;AAED,yBACE,WAA2D,EAC3D,WAA8B,EAC9B,cAAkC;IAElC,IAAM,kBAAkB,GAAG,yBAAyB,CAAC,cAAc,CAAC,CAAA;IAEpE,OAAO,UACL,KAAgB,EAChB,kBAAmC;QAAnC,mCAAA,EAAA,0BAAmC;;;;;4BAGhB,qBAAM,WAAW,CAAC,KAAK,CAAC,EAAA;;wBAArC,UAAU,GAAG,SAAwB;wBACtB,qBAAM,kBAAY,CAAC,KAAK,EAAE,UAAU,CAAC,EAAA;;wBAApD,YAAY,GAAG,SAAqC;6BAE9B,kBAAkB,EAAlB,wBAAkB;wBAC1C,qBAAM,WAAW,CAAC,eAAe,CAAC,YAAY,CAAC,EAAA;;wBAA/C,KAAA,SAAoE,CAAA;;4BACpE,qBAAM,OAAO,CAAC,GAAG,CAAC,YAAY,CAAC,GAAG,CAClC,UAAA,MAAM,IAAI,OAAA,WAAW,CAAC,eAAe,CAAC,MAAM,CAAC,EAAnC,CAAmC,CAC9C,CAAC,EAAA;;wBAFA,KAAA,SAEqB,CAAA;;;wBAJnB,mBAAmB,KAIA;wBAGnB,gBAAgB,GAAG,mBAAmB,CAAC,GAAG,CAC9C,UAAC,SAAS,EAAE,CAAC,IAAK,OAAA,SAAS,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,EAAvC,CAAuC,CAC1D,CAAA;wBAEmB,qBAAM,kBAAkB,CAAC,KAAK,EAAE,gBAAgB,EAAE,kBAAkB,CAAC,EAAA;;wBAAnF,WAAW,GAAG,SAAqE;wBAEzF,sBAAO,UAAU,CAAC,GAAG,CAAC,UAAC,SAAS,EAAE,CAAC;gCACjC,OAAA,IAAI,yCAAmB,CACrB,SAAS,EACT,mBAAmB,CAAC,CAAC,CAAC,CAAC,YAAY,CACjC,IAAI,mCAAK,CAAC,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE,SAAS,CAAC,GAAG,CAAC,CAAC,CAAC,CAC5C,EACD,WAAW,CAAC,CAAC,CAAC,CACf;4BAND,CAMC,CACF,EAAA;;;;KAEF,CAAA;AACH,CAAC;AAED,uCACE,cAAgC,EAChC,WAA8B,EAC9B,cAAkC;IAElC,OAAO,UACL,KAAgB,EAChB,aAA2B,EAC3B,kBAAmC;QADnC,8BAAA,EAAA,mBAA2B;QAC3B,mCAAA,EAAA,0BAAmC;;;;gBAE7B,WAAW,GAAG,UAAC,KAAgB,IAAK,OAAA,cAAc,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,EAAhD,CAAgD,CAAA;gBACpF,QAAQ,GAAG,eAAe,CAAC,WAAW,EAAE,WAAW,EAAE,cAAc,CAAC,CAAA;gBAC1E,sBAAO,QAAQ,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;;KAC3C,CAAA;AACH,CAAC;AAdD,sEAcC;AAED,mCACE,UAAsB,EACtB,WAA8B,EAC9B,cAAkC;IAElC,OAAO,UACL,KAAgB,EAChB,aAA2D,EAC3D,kBAAmC;QADnC,8BAAA,EAAA,kBAA2D;QAC3D,mCAAA,EAAA,0BAAmC;;;;gBAE7B,WAAW,GAAG,UAAC,KAAgB,IAAK,OAAA,UAAU,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,EAA5C,CAA4C,CAAA;gBAChF,QAAQ,GAAG,eAAe,CAAC,WAAW,EAAE,WAAW,EAAE,cAAc,CAAC,CAAA;gBAC1E,sBAAO,QAAQ,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;;KAC3C,CAAA;AACH,CAAC;AAdD,8DAcC;AAED,8BACE,KAAY,EACZ,cAAkC;IAElC,IAAM,kBAAkB,GAAG,yBAAyB,CAAC,cAAc,CAAC,CAAA;IAEpE,OAAO,UACL,KAAgB,EAChB,kBAA2C,EAC3C,kBAAmC;QADnC,mCAAA,EAAA,uBAA2C;QAC3C,mCAAA,EAAA,0BAAmC;;;;;4BAGnB,qBAAM,KAAK,CAAC,OAAO,CAAC,KAAK,EAAE,kBAAkB,CAAC,EAAA;;wBAAxD,OAAO,GAAG,SAA8C;wBAExD,gBAAgB,GAAG,OAAO,CAAC,GAAG,CAClC,UAAC,EAAiB;gCAAf,gCAAa;4BAAO,OAAA,aAAa,CAAC,KAAK,EAAE;wBAArB,CAAqB,CAC7C,CAAA;wBAEmB,qBAAM,kBAAkB,CAAC,KAAK,EAAE,gBAAgB,EAAE,kBAAkB,CAAC,EAAA;;wBAAnF,WAAW,GAAG,SAAqE;wBAEzF,sBAAO,OAAO,CAAC,GAAG,CAAC,UAAC,EAAgC,EAAE,CAAC;oCAAjC,gCAAa,EAAE,gCAAa;gCAChD,OAAA,IAAI,yCAAmB,CACrB,aAAa,EACb,aAAa,EACb,WAAW,CAAC,CAAC,CAAC,CACf;4BAJD,CAIC,CACF,EAAA;;;;KAEF,CAAA;AACH,CAAC;AA7BD,oDA6BC"}
\ No newline at end of file
import * as tf from '@tensorflow/tfjs-core';
import { Rect, TNetInput } from 'tfjs-image-recognition-base';
import { Rect } from 'tfjs-image-recognition-base';
import { FaceDetection } from '../classes/FaceDetection';
/**
* Extracts the tensors of the image regions containing the detected faces.
......@@ -7,8 +7,8 @@ import { FaceDetection } from '../classes/FaceDetection';
* Using this method is faster then extracting a canvas for each face and
* converting them to tensors individually.
*
* @param input The image that face detection has been performed on.
* @param imageTensor The image tensor that face detection has been performed on.
* @param detections The face detection results or face bounding boxes for that image.
* @returns Tensors of the corresponding image region for each detected face.
*/
export declare function extractFaceTensors(input: TNetInput, detections: Array<FaceDetection | Rect>): Promise<tf.Tensor4D[]>;
export declare function extractFaceTensors(imageTensor: tf.Tensor3D | tf.Tensor4D, detections: Array<FaceDetection | Rect>): Promise<tf.Tensor3D[]>;
......@@ -10,41 +10,28 @@ var FaceDetection_1 = require("../classes/FaceDetection");
* Using this method is faster then extracting a canvas for each face and
* converting them to tensors individually.
*
* @param input The image that face detection has been performed on.
* @param imageTensor The image tensor that face detection has been performed on.
* @param detections The face detection results or face bounding boxes for that image.
* @returns Tensors of the corresponding image region for each detected face.
*/
function extractFaceTensors(input, detections) {
function extractFaceTensors(imageTensor, detections) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var netInput;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
case 1:
netInput = _a.sent();
if (netInput.batchSize > 1) {
if (netInput.isManaged) {
netInput.dispose();
}
if (tfjs_image_recognition_base_1.isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {
throw new Error('extractFaceTensors - batchSize > 1 not supported');
}
return [2 /*return*/, tf.tidy(function () {
var imgTensor = netInput.inputs[0].expandDims().toFloat();
var _a = imgTensor.shape.slice(1), imgHeight = _a[0], imgWidth = _a[1], numChannels = _a[2];
var _a = imageTensor.shape.slice(tfjs_image_recognition_base_1.isTensor4D(imageTensor) ? 1 : 0), imgHeight = _a[0], imgWidth = _a[1], numChannels = _a[2];
var boxes = detections.map(function (det) { return det instanceof FaceDetection_1.FaceDetection
? det.forSize(imgWidth, imgHeight).getBox()
: det; })
.map(function (box) { return box.clipAtImageBorders(imgWidth, imgHeight); });
var faceTensors = boxes.map(function (_a) {
var x = _a.x, y = _a.y, width = _a.width, height = _a.height;
return tf.slice4d(imgTensor, [0, y, x, 0], [1, height, width, numChannels]);
return tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]);
});
if (netInput.isManaged) {
netInput.dispose();
}
return faceTensors;
})];
}
});
});
}
......
{"version":3,"file":"extractFaceTensors.js","sourceRoot":"","sources":["../../src/dom/extractFaceTensors.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAA0E;AAE1E,0DAAyD;AAEzD;;;;;;;;;GASG;AACH,4BACE,KAAgB,EAChB,UAAuC;;;;;wBAGtB,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;;oBAAxC,QAAQ,GAAG,SAA6B;oBAE9C,IAAI,QAAQ,CAAC,SAAS,GAAG,CAAC,EAAE;wBAC1B,IAAI,QAAQ,CAAC,SAAS,EAAE;4BACtB,QAAQ,CAAC,OAAO,EAAE,CAAA;yBACnB;wBACD,MAAM,IAAI,KAAK,CAAC,kDAAkD,CAAC,CAAA;qBACpE;oBAED,sBAAO,EAAE,CAAC,IAAI,CAAC;4BACb,IAAM,SAAS,GAAG,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,UAAU,EAAE,CAAC,OAAO,EAAiB,CAAA;4BAEpE,IAAA,6BAA6D,EAA5D,iBAAS,EAAE,gBAAQ,EAAE,mBAAW,CAA4B;4BAEnE,IAAM,KAAK,GAAG,UAAU,CAAC,GAAG,CAC1B,UAAA,GAAG,IAAI,OAAA,GAAG,YAAY,6BAAa;gCACjC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC,MAAM,EAAE;gCAC3C,CAAC,CAAC,GAAG,EAFA,CAEA,CACR;iCACE,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,kBAAkB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAA3C,CAA2C,CAAC,CAAA;4BAE1D,IAAM,WAAW,GAAG,KAAK,CAAC,GAAG,CAAC,UAAC,EAAuB;oCAArB,QAAC,EAAE,QAAC,EAAE,gBAAK,EAAE,kBAAM;gCAClD,OAAA,EAAE,CAAC,OAAO,CAAC,SAAS,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,EAAE,KAAK,EAAE,WAAW,CAAC,CAAC;4BAApE,CAAoE,CACrE,CAAA;4BAED,IAAI,QAAQ,CAAC,SAAS,EAAE;gCACtB,QAAQ,CAAC,OAAO,EAAE,CAAA;6BACnB;4BACD,OAAO,WAAW,CAAA;wBACpB,CAAC,CAAC,EAAA;;;;CACH;AAnCD,gDAmCC"}
\ No newline at end of file
{"version":3,"file":"extractFaceTensors.js","sourceRoot":"","sources":["../../src/dom/extractFaceTensors.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAA+D;AAE/D,0DAAyD;AAEzD;;;;;;;;;GASG;AACH,4BACE,WAAsC,EACtC,UAAuC;;;YAGvC,IAAI,wCAAU,CAAC,WAAW,CAAC,IAAI,WAAW,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE;gBACvD,MAAM,IAAI,KAAK,CAAC,kDAAkD,CAAC,CAAA;aACpE;YAED,sBAAO,EAAE,CAAC,IAAI,CAAC;oBACP,IAAA,2FAA6F,EAA5F,iBAAS,EAAE,gBAAQ,EAAE,mBAAW,CAA4D;oBAEnG,IAAM,KAAK,GAAG,UAAU,CAAC,GAAG,CAC1B,UAAA,GAAG,IAAI,OAAA,GAAG,YAAY,6BAAa;wBACjC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC,MAAM,EAAE;wBAC3C,CAAC,CAAC,GAAG,EAFA,CAEA,CACR;yBACE,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,kBAAkB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAA3C,CAA2C,CAAC,CAAA;oBAE1D,IAAM,WAAW,GAAG,KAAK,CAAC,GAAG,CAAC,UAAC,EAAuB;4BAArB,QAAC,EAAE,QAAC,EAAE,gBAAK,EAAE,kBAAM;wBAClD,OAAA,EAAE,CAAC,OAAO,CAAC,WAAW,CAAC,IAAI,CAAC,SAAS,EAAE,QAAQ,EAAE,WAAW,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,EAAE,WAAW,CAAC,CAAC;oBAAvG,CAAuG,CACxG,CAAA;oBAED,OAAO,WAAW,CAAA;gBACpB,CAAC,CAAC,EAAA;;;CACH;AAzBD,gDAyBC"}
\ No newline at end of file
......@@ -12,29 +12,30 @@ var FaceDetection_1 = require("../classes/FaceDetection");
*/
function extractFaces(input, detections) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var canvas, netInput, ctx, boxes;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
var canvas, netInput, tensorOrCanvas, _a, ctx, boxes;
return tslib_1.__generator(this, function (_b) {
switch (_b.label) {
case 0:
canvas = input;
if (!!(input instanceof HTMLCanvasElement)) return [3 /*break*/, 3];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
if (!!(input instanceof HTMLCanvasElement)) return [3 /*break*/, 5];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1:
netInput = _a.sent();
netInput = _b.sent();
if (netInput.batchSize > 1) {
if (netInput.isManaged) {
netInput.dispose();
}
throw new Error('extractFaces - batchSize > 1 not supported');
}
return [4 /*yield*/, tfjs_image_recognition_base_1.imageTensorToCanvas(netInput.inputs[0])];
case 2:
canvas = _a.sent();
if (netInput.isManaged) {
netInput.dispose();
}
_a.label = 3;
tensorOrCanvas = netInput.getInput(0);
if (!(tensorOrCanvas instanceof HTMLCanvasElement)) return [3 /*break*/, 2];
_a = tensorOrCanvas;
return [3 /*break*/, 4];
case 2: return [4 /*yield*/, tfjs_image_recognition_base_1.imageTensorToCanvas(tensorOrCanvas)];
case 3:
_a = _b.sent();
_b.label = 4;
case 4:
canvas = _a;
_b.label = 5;
case 5:
ctx = tfjs_image_recognition_base_1.getContext2dOrThrow(canvas);
boxes = detections.map(function (det) { return det instanceof FaceDetection_1.FaceDetection
? det.forSize(canvas.width, canvas.height).getBox().floor()
......
{"version":3,"file":"extractFaces.js","sourceRoot":"","sources":["../../src/dom/extractFaces.ts"],"names":[],"mappings":";;;AAAA,2EAOqC;AAErC,0DAAyD;AAEzD;;;;;;GAMG;AACH,sBACE,KAAgB,EAChB,UAAuC;;;;;;oBAGnC,MAAM,GAAG,KAA0B,CAAA;yBAEnC,CAAC,CAAC,KAAK,YAAY,iBAAiB,CAAC,EAArC,wBAAqC;oBACtB,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;;oBAAxC,QAAQ,GAAG,SAA6B;oBAE9C,IAAI,QAAQ,CAAC,SAAS,GAAG,CAAC,EAAE;wBAC1B,IAAI,QAAQ,CAAC,SAAS,EAAE;4BACtB,QAAQ,CAAC,OAAO,EAAE,CAAA;yBACnB;wBACD,MAAM,IAAI,KAAK,CAAC,4CAA4C,CAAC,CAAA;qBAC9D;oBAEQ,qBAAM,iDAAmB,CAAC,QAAQ,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAA;;oBAAtD,MAAM,GAAG,SAA6C,CAAA;oBAEtD,IAAI,QAAQ,CAAC,SAAS,EAAE;wBACtB,QAAQ,CAAC,OAAO,EAAE,CAAA;qBACnB;;;oBAGG,GAAG,GAAG,iDAAmB,CAAC,MAAM,CAAC,CAAA;oBAEjC,KAAK,GAAG,UAAU,CAAC,GAAG,CAC1B,UAAA,GAAG,IAAI,OAAA,GAAG,YAAY,6BAAa;wBACjC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,KAAK,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,MAAM,EAAE,CAAC,KAAK,EAAE;wBAC3D,CAAC,CAAC,GAAG,EAFA,CAEA,CACR;yBACE,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,kBAAkB,CAAC,MAAM,CAAC,KAAK,EAAE,MAAM,CAAC,MAAM,CAAC,EAAnD,CAAmD,CAAC,CAAA;oBAElE,sBAAO,KAAK,CAAC,GAAG,CAAC,UAAC,EAAuB;gCAArB,QAAC,EAAE,QAAC,EAAE,gBAAK,EAAE,kBAAM;4BACrC,IAAM,OAAO,GAAG,0CAAY,CAAC,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAAC,CAAA;4BAC/C,iDAAmB,CAAC,OAAO,CAAC;iCACzB,YAAY,CAAC,GAAG,CAAC,YAAY,CAAC,CAAC,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAA;4BAC5D,OAAO,OAAO,CAAA;wBAChB,CAAC,CAAC,EAAA;;;;CACH;AAvCD,oCAuCC"}
\ No newline at end of file
{"version":3,"file":"extractFaces.js","sourceRoot":"","sources":["../../src/dom/extractFaces.ts"],"names":[],"mappings":";;;AAAA,2EAOqC;AAErC,0DAAyD;AAEzD;;;;;;GAMG;AACH,sBACE,KAAgB,EAChB,UAAuC;;;;;;oBAGnC,MAAM,GAAG,KAA0B,CAAA;yBAEnC,CAAC,CAAC,KAAK,YAAY,iBAAiB,CAAC,EAArC,wBAAqC;oBACtB,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;;oBAAlC,QAAQ,GAAG,SAAuB;oBAExC,IAAI,QAAQ,CAAC,SAAS,GAAG,CAAC,EAAE;wBAC1B,MAAM,IAAI,KAAK,CAAC,4CAA4C,CAAC,CAAA;qBAC9D;oBAEK,cAAc,GAAG,QAAQ,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAA;yBAClC,CAAA,cAAc,YAAY,iBAAiB,CAAA,EAA3C,wBAA2C;oBAChD,KAAA,cAAc,CAAA;;wBACd,qBAAM,iDAAmB,CAAC,cAAc,CAAC,EAAA;;oBAAzC,KAAA,SAAyC,CAAA;;;oBAF7C,MAAM,KAEuC,CAAA;;;oBAGzC,GAAG,GAAG,iDAAmB,CAAC,MAAM,CAAC,CAAA;oBACjC,KAAK,GAAG,UAAU,CAAC,GAAG,CAC1B,UAAA,GAAG,IAAI,OAAA,GAAG,YAAY,6BAAa;wBACjC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,KAAK,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,MAAM,EAAE,CAAC,KAAK,EAAE;wBAC3D,CAAC,CAAC,GAAG,EAFA,CAEA,CACR;yBACE,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,kBAAkB,CAAC,MAAM,CAAC,KAAK,EAAE,MAAM,CAAC,MAAM,CAAC,EAAnD,CAAmD,CAAC,CAAA;oBAElE,sBAAO,KAAK,CAAC,GAAG,CAAC,UAAC,EAAuB;gCAArB,QAAC,EAAE,QAAC,EAAE,gBAAK,EAAE,kBAAM;4BACrC,IAAM,OAAO,GAAG,0CAAY,CAAC,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAAC,CAAA;4BAC/C,iDAAmB,CAAC,OAAO,CAAC;iCACzB,YAAY,CAAC,GAAG,CAAC,YAAY,CAAC,CAAC,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAA;4BAC5D,OAAO,OAAO,CAAA;wBAChB,CAAC,CAAC,EAAA;;;;CACH;AAlCD,oCAkCC"}
\ No newline at end of file
......@@ -21,7 +21,7 @@ var FaceDetectionNet = /** @class */ (function (_super) {
throw new Error('FaceDetectionNet - load model before inference');
}
return tf.tidy(function () {
var batchTensor = input.toBatchTensor(512, false);
var batchTensor = input.toBatchTensor(512, false).toFloat();
var x = tf.sub(tf.mul(batchTensor, tf.scalar(0.007843137718737125)), tf.scalar(1));
var features = mobileNetV1_1.mobileNetV1(x, params.mobilenetv1);
var _a = predictionLayer_1.predictionLayer(features.out, features.conv11, params.prediction_layer), boxPredictions = _a.boxPredictions, classPredictions = _a.classPredictions;
......@@ -35,7 +35,7 @@ var FaceDetectionNet = /** @class */ (function (_super) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
......@@ -45,10 +45,10 @@ var FaceDetectionNet = /** @class */ (function (_super) {
if (minConfidence === void 0) { minConfidence = 0.8; }
if (maxResults === void 0) { maxResults = 100; }
return tslib_1.__awaiter(this, void 0, void 0, function () {
var netInput, _a, _boxes, _scores, boxes, scores, i, scoresData, _b, _c, iouThreshold, indices, paddings, results;
var netInput, _a, _boxes, _scores, boxes, scores, i, scoresData, _b, _c, iouThreshold, indices, reshapedDims, inputSize, padX, padY, results;
return tslib_1.__generator(this, function (_d) {
switch (_d.label) {
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1:
netInput = _d.sent();
_a = this.forwardInput(netInput), _boxes = _a.boxes, _scores = _a.scores;
......@@ -64,17 +64,20 @@ var FaceDetectionNet = /** @class */ (function (_super) {
scoresData = _c.apply(_b, [_d.sent()]);
iouThreshold = 0.5;
indices = nonMaxSuppression_1.nonMaxSuppression(boxes, scoresData, maxResults, iouThreshold, minConfidence);
paddings = netInput.getRelativePaddings(0);
reshapedDims = netInput.getReshapedInputDimensions(0);
inputSize = netInput.inputSize;
padX = inputSize / reshapedDims.width;
padY = inputSize / reshapedDims.height;
results = indices
.map(function (idx) {
var _a = [
Math.max(0, boxes.get(idx, 0)),
Math.min(1.0, boxes.get(idx, 2))
].map(function (val) { return val * paddings.y; }), top = _a[0], bottom = _a[1];
].map(function (val) { return val * padY; }), top = _a[0], bottom = _a[1];
var _b = [
Math.max(0, boxes.get(idx, 1)),
Math.min(1.0, boxes.get(idx, 3))
].map(function (val) { return val * paddings.x; }), left = _b[0], right = _b[1];
].map(function (val) { return val * padX; }), left = _b[0], right = _b[1];
return new FaceDetection_1.FaceDetection(scoresData[idx], new tfjs_image_recognition_base_1.Rect(left, top, right - left, bottom - top), {
height: netInput.getInputHeight(0),
width: netInput.getInputWidth(0)
......
{"version":3,"file":"FaceDetectionNet.js","sourceRoot":"","sources":["../../src/faceDetectionNet/FaceDetectionNet.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAmG;AAEnG,0DAAyD;AACzD,iDAAgD;AAChD,6DAA4D;AAC5D,6CAA4C;AAC5C,yDAAwD;AACxD,6CAA4C;AAC5C,qDAAoD;AAGpD;IAAsC,4CAAwB;IAE5D;eACE,kBAAM,kBAAkB,CAAC;IAC3B,CAAC;IAEM,uCAAY,GAAnB,UAAoB,KAAe;QAEzB,IAAA,oBAAM,CAAS;QAEvB,IAAI,CAAC,MAAM,EAAE;YACX,MAAM,IAAI,KAAK,CAAC,gDAAgD,CAAC,CAAA;SAClE;QAED,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,WAAW,GAAG,KAAK,CAAC,aAAa,CAAC,GAAG,EAAE,KAAK,CAAC,CAAA;YAEnD,IAAM,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,WAAW,EAAE,EAAE,CAAC,MAAM,CAAC,oBAAoB,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAgB,CAAA;YACnG,IAAM,QAAQ,GAAG,yBAAW,CAAC,CAAC,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAE7C,IAAA,8FAGqE,EAFzE,kCAAc,EACd,sCAAgB,CACyD;YAE3E,OAAO,yBAAW,CAAC,cAAc,EAAE,gBAAgB,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;QAC3E,CAAC,CAAC,CAAA;IACJ,CAAC;IAEY,kCAAO,GAApB,UAAqB,KAAgB;;;;;;wBAC5B,KAAA,IAAI,CAAC,YAAY,CAAA;wBAAC,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;4BAAtD,sBAAO,SAAA,IAAI,GAAc,SAA6B,EAAC,EAAA;;;;KACxD;IAEY,sCAAW,GAAxB,UACE,KAAgB,EAChB,aAA2B,EAC3B,UAAwB;QADxB,8BAAA,EAAA,mBAA2B;QAC3B,2BAAA,EAAA,gBAAwB;;;;;4BAGP,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;;wBAAxC,QAAQ,GAAG,SAA6B;wBAExC,KAGF,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,EAFtB,MAAM,WAAA,EACL,OAAO,YAAA,CACc;wBAIzB,KAAK,GAAG,MAAM,CAAC,CAAC,CAAC,CAAA;wBACjB,MAAM,GAAG,OAAO,CAAC,CAAC,CAAC,CAAA;wBACzB,KAAS,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;4BACtC,MAAM,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;4BACnB,OAAO,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;yBACrB;wBAGkB,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;wBAAC,qBAAM,MAAM,CAAC,IAAI,EAAE,EAAA;;wBAA3C,UAAU,GAAG,cAAW,SAAmB,EAAC;wBAE5C,YAAY,GAAG,GAAG,CAAA;wBAClB,OAAO,GAAG,qCAAiB,CAC/B,KAAK,EACL,UAAU,EACV,UAAU,EACV,YAAY,EACZ,aAAa,CACd,CAAA;wBAEK,QAAQ,GAAG,QAAQ,CAAC,mBAAmB,CAAC,CAAC,CAAC,CAAA;wBAE1C,OAAO,GAAG,OAAO;6BACpB,GAAG,CAAC,UAAA,GAAG;4BACA,IAAA;;;8EAGwB,EAHvB,WAAG,EAAE,cAAM,CAGY;4BACxB,IAAA;;;8EAGwB,EAHvB,YAAI,EAAE,aAAK,CAGY;4BAC9B,OAAO,IAAI,6BAAa,CACtB,UAAU,CAAC,GAAG,CAAC,EACf,IAAI,kCAAI,CACN,IAAI,EACJ,GAAG,EACH,KAAK,GAAG,IAAI,EACZ,MAAM,GAAG,GAAG,CACb,EACD;gCACE,MAAM,EAAE,QAAQ,CAAC,cAAc,CAAC,CAAC,CAAC;gCAClC,KAAK,EAAE,QAAQ,CAAC,aAAa,CAAC,CAAC,CAAC;6BACjC,CACF,CAAA;wBACH,CAAC,CAAC,CAAA;wBAEJ,KAAK,CAAC,OAAO,EAAE,CAAA;wBACf,MAAM,CAAC,OAAO,EAAE,CAAA;wBAEhB,sBAAO,OAAO,EAAA;;;;KACf;IAES,8CAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,wCAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,uBAAC;AAAD,CAAC,AA3GD,CAAsC,2CAAa,GA2GlD;AA3GY,4CAAgB"}
\ No newline at end of file
{"version":3,"file":"FaceDetectionNet.js","sourceRoot":"","sources":["../../src/faceDetectionNet/FaceDetectionNet.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAmG;AAEnG,0DAAyD;AACzD,iDAAgD;AAChD,6DAA4D;AAC5D,6CAA4C;AAC5C,yDAAwD;AACxD,6CAA4C;AAC5C,qDAAoD;AAGpD;IAAsC,4CAAwB;IAE5D;eACE,kBAAM,kBAAkB,CAAC;IAC3B,CAAC;IAEM,uCAAY,GAAnB,UAAoB,KAAe;QAEzB,IAAA,oBAAM,CAAS;QAEvB,IAAI,CAAC,MAAM,EAAE;YACX,MAAM,IAAI,KAAK,CAAC,gDAAgD,CAAC,CAAA;SAClE;QAED,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,WAAW,GAAG,KAAK,CAAC,aAAa,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC,OAAO,EAAE,CAAA;YAE7D,IAAM,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,WAAW,EAAE,EAAE,CAAC,MAAM,CAAC,oBAAoB,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAgB,CAAA;YACnG,IAAM,QAAQ,GAAG,yBAAW,CAAC,CAAC,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAE7C,IAAA,8FAGqE,EAFzE,kCAAc,EACd,sCAAgB,CACyD;YAE3E,OAAO,yBAAW,CAAC,cAAc,EAAE,gBAAgB,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;QAC3E,CAAC,CAAC,CAAA;IACJ,CAAC;IAEY,kCAAO,GAApB,UAAqB,KAAgB;;;;;;wBAC5B,KAAA,IAAI,CAAC,YAAY,CAAA;wBAAC,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;4BAAhD,sBAAO,SAAA,IAAI,GAAc,SAAuB,EAAC,EAAA;;;;KAClD;IAEY,sCAAW,GAAxB,UACE,KAAgB,EAChB,aAA2B,EAC3B,UAAwB;QADxB,8BAAA,EAAA,mBAA2B;QAC3B,2BAAA,EAAA,gBAAwB;;;;;4BAGP,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;;wBAAlC,QAAQ,GAAG,SAAuB;wBAElC,KAGF,IAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,EAFtB,MAAM,WAAA,EACL,OAAO,YAAA,CACc;wBAIzB,KAAK,GAAG,MAAM,CAAC,CAAC,CAAC,CAAA;wBACjB,MAAM,GAAG,OAAO,CAAC,CAAC,CAAC,CAAA;wBACzB,KAAS,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;4BACtC,MAAM,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;4BACnB,OAAO,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,CAAA;yBACrB;wBAGkB,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;wBAAC,qBAAM,MAAM,CAAC,IAAI,EAAE,EAAA;;wBAA3C,UAAU,GAAG,cAAW,SAAmB,EAAC;wBAE5C,YAAY,GAAG,GAAG,CAAA;wBAClB,OAAO,GAAG,qCAAiB,CAC/B,KAAK,EACL,UAAU,EACV,UAAU,EACV,YAAY,EACZ,aAAa,CACd,CAAA;wBAEK,YAAY,GAAG,QAAQ,CAAC,0BAA0B,CAAC,CAAC,CAAC,CAAA;wBACrD,SAAS,GAAG,QAAQ,CAAC,SAAmB,CAAA;wBACxC,IAAI,GAAG,SAAS,GAAG,YAAY,CAAC,KAAK,CAAA;wBACrC,IAAI,GAAG,SAAS,GAAG,YAAY,CAAC,MAAM,CAAA;wBAEtC,OAAO,GAAG,OAAO;6BACpB,GAAG,CAAC,UAAA,GAAG;4BACA,IAAA;;;wEAGkB,EAHjB,WAAG,EAAE,cAAM,CAGM;4BAClB,IAAA;;;wEAGkB,EAHjB,YAAI,EAAE,aAAK,CAGM;4BACxB,OAAO,IAAI,6BAAa,CACtB,UAAU,CAAC,GAAG,CAAC,EACf,IAAI,kCAAI,CACN,IAAI,EACJ,GAAG,EACH,KAAK,GAAG,IAAI,EACZ,MAAM,GAAG,GAAG,CACb,EACD;gCACE,MAAM,EAAE,QAAQ,CAAC,cAAc,CAAC,CAAC,CAAC;gCAClC,KAAK,EAAE,QAAQ,CAAC,aAAa,CAAC,CAAC,CAAC;6BACjC,CACF,CAAA;wBACH,CAAC,CAAC,CAAA;wBAEJ,KAAK,CAAC,OAAO,EAAE,CAAA;wBACf,MAAM,CAAC,OAAO,EAAE,CAAA;wBAEhB,sBAAO,OAAO,EAAA;;;;KACf;IAES,8CAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,wCAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,uBAAC;AAAD,CAAC,AA9GD,CAAsC,2CAAa,GA8GlD;AA9GY,4CAAgB"}
\ No newline at end of file
import * as tf from '@tensorflow/tfjs-core';
import { NetInput } from 'tfjs-image-recognition-base';
import { FaceLandmark68NetBase } from './FaceLandmark68NetBase';
import { NetParams } from './types';
export declare class FaceLandmark68Net extends FaceLandmark68NetBase<NetParams> {
constructor();
runNet(input: NetInput): tf.Tensor2D;
protected loadQuantizedParams(uri: string | undefined): Promise<{
params: NetParams;
paramMappings: {
originalPath?: string | undefined;
paramPath: string;
}[];
}>;
protected extractParams(weights: Float32Array): {
params: NetParams;
paramMappings: {
originalPath?: string | undefined;
paramPath: string;
}[];
};
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var tf = require("@tensorflow/tfjs-core");
var tfjs_tiny_yolov2_1 = require("tfjs-tiny-yolov2");
var extractParams_1 = require("./extractParams");
var FaceLandmark68NetBase_1 = require("./FaceLandmark68NetBase");
var fullyConnectedLayer_1 = require("./fullyConnectedLayer");
var loadQuantizedParams_1 = require("./loadQuantizedParams");
function conv(x, params) {
return tfjs_tiny_yolov2_1.convLayer(x, params, 'valid', true);
}
function maxPool(x, strides) {
if (strides === void 0) { strides = [2, 2]; }
return tf.maxPool(x, [2, 2], strides, 'valid');
}
var FaceLandmark68Net = /** @class */ (function (_super) {
tslib_1.__extends(FaceLandmark68Net, _super);
function FaceLandmark68Net() {
return _super.call(this, 'FaceLandmark68Net') || this;
}
FaceLandmark68Net.prototype.runNet = function (input) {
var params = this.params;
if (!params) {
throw new Error('FaceLandmark68Net - load model before inference');
}
return tf.tidy(function () {
var batchTensor = input.toBatchTensor(128, true).toFloat();
var out = conv(batchTensor, params.conv0);
out = maxPool(out);
out = conv(out, params.conv1);
out = conv(out, params.conv2);
out = maxPool(out);
out = conv(out, params.conv3);
out = conv(out, params.conv4);
out = maxPool(out);
out = conv(out, params.conv5);
out = conv(out, params.conv6);
out = maxPool(out, [1, 1]);
out = conv(out, params.conv7);
var fc0 = tf.relu(fullyConnectedLayer_1.fullyConnectedLayer(out.as2D(out.shape[0], -1), params.fc0));
return fullyConnectedLayer_1.fullyConnectedLayer(fc0, params.fc1);
});
};
FaceLandmark68Net.prototype.loadQuantizedParams = function (uri) {
return loadQuantizedParams_1.loadQuantizedParams(uri);
};
FaceLandmark68Net.prototype.extractParams = function (weights) {
return extractParams_1.extractParams(weights);
};
return FaceLandmark68Net;
}(FaceLandmark68NetBase_1.FaceLandmark68NetBase));
exports.FaceLandmark68Net = FaceLandmark68Net;
//# sourceMappingURL=FaceLandmark68Net.js.map
\ No newline at end of file
{"version":3,"file":"FaceLandmark68Net.js","sourceRoot":"","sources":["../../src/faceLandmarkNet/FaceLandmark68Net.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAE5C,qDAAyD;AAEzD,iDAAgD;AAChD,iEAAgE;AAChE,6DAA4D;AAC5D,6DAA4D;AAG5D,cAAc,CAAc,EAAE,MAAkB;IAC9C,OAAO,4BAAS,CAAC,CAAC,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,CAAC,CAAA;AAC5C,CAAC;AAED,iBAAiB,CAAc,EAAE,OAAkC;IAAlC,wBAAA,EAAA,WAA6B,CAAC,EAAE,CAAC,CAAC;IACjE,OAAO,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,EAAE,OAAO,CAAC,CAAA;AAChD,CAAC;AAED;IAAuC,6CAAgC;IAErE;eACE,kBAAM,mBAAmB,CAAC;IAC5B,CAAC;IAEM,kCAAM,GAAb,UAAc,KAAe;QAEnB,IAAA,oBAAM,CAAS;QAEvB,IAAI,CAAC,MAAM,EAAE;YACX,MAAM,IAAI,KAAK,CAAC,iDAAiD,CAAC,CAAA;SACnE;QAED,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,WAAW,GAAG,KAAK,CAAC,aAAa,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC,OAAO,EAAiB,CAAA;YAE3E,IAAI,GAAG,GAAG,IAAI,CAAC,WAAW,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YACzC,GAAG,GAAG,OAAO,CAAC,GAAG,CAAC,CAAA;YAClB,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,OAAO,CAAC,GAAG,CAAC,CAAA;YAClB,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,OAAO,CAAC,GAAG,CAAC,CAAA;YAClB,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,GAAG,GAAG,OAAO,CAAC,GAAG,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAA;YAC1B,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,MAAM,CAAC,KAAK,CAAC,CAAA;YAC7B,IAAM,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,yCAAmB,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,GAAG,CAAC,CAAC,CAAA;YAEhF,OAAO,yCAAmB,CAAC,GAAG,EAAE,MAAM,CAAC,GAAG,CAAC,CAAA;QAC7C,CAAC,CAAC,CAAA;IACJ,CAAC;IAES,+CAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,yCAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,wBAAC;AAAD,CAAC,AA1CD,CAAuC,6CAAqB,GA0C3D;AA1CY,8CAAiB"}
\ No newline at end of file
import * as tf from '@tensorflow/tfjs-core';
import { NetInput, NeuralNetwork, TNetInput, Dimensions } from 'tfjs-image-recognition-base';
import { FaceLandmarks68 } from '../classes/FaceLandmarks68';
export declare class FaceLandmark68NetBase<NetParams> extends NeuralNetwork<NetParams> {
private __name;
constructor(_name: string);
runNet(_: NetInput): tf.Tensor2D;
postProcess(output: tf.Tensor2D, inputSize: number, originalDimensions: Dimensions[]): tf.Tensor2D;
forwardInput(input: NetInput): tf.Tensor2D;
forward(input: TNetInput): Promise<tf.Tensor2D>;
detectLandmarks(input: TNetInput): Promise<FaceLandmarks68 | FaceLandmarks68[]>;
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var tf = require("@tensorflow/tfjs-core");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var FaceLandmarks68_1 = require("../classes/FaceLandmarks68");
var FaceLandmark68NetBase = /** @class */ (function (_super) {
tslib_1.__extends(FaceLandmark68NetBase, _super);
function FaceLandmark68NetBase(_name) {
var _this = _super.call(this, _name) || this;
_this.__name = _name;
return _this;
}
FaceLandmark68NetBase.prototype.runNet = function (_) {
throw new Error(this.__name + " - runNet not implemented");
};
FaceLandmark68NetBase.prototype.postProcess = function (output, inputSize, originalDimensions) {
var inputDimensions = originalDimensions.map(function (_a) {
var width = _a.width, height = _a.height;
var scale = inputSize / Math.max(height, width);
return {
width: width * scale,
height: height * scale
};
});
var batchSize = inputDimensions.length;
return tf.tidy(function () {
var createInterleavedTensor = function (fillX, fillY) {
return tf.stack([
tf.fill([68], fillX),
tf.fill([68], fillY)
], 1).as2D(1, 136).as1D();
};
var getPadding = function (batchIdx, cond) {
var _a = inputDimensions[batchIdx], width = _a.width, height = _a.height;
return cond(width, height) ? Math.abs(width - height) / 2 : 0;
};
var getPaddingX = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return w < h; }); };
var getPaddingY = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return h < w; }); };
var landmarkTensors = output
.mul(tf.fill([batchSize, 136], inputSize))
.sub(tf.stack(Array.from(Array(batchSize), function (_, batchIdx) {
return createInterleavedTensor(getPaddingX(batchIdx), getPaddingY(batchIdx));
})))
.div(tf.stack(Array.from(Array(batchSize), function (_, batchIdx) {
return createInterleavedTensor(inputDimensions[batchIdx].width, inputDimensions[batchIdx].height);
})));
return landmarkTensors;
});
};
FaceLandmark68NetBase.prototype.forwardInput = function (input) {
var _this = this;
return tf.tidy(function () {
var out = _this.runNet(input);
return _this.postProcess(out, input.inputSize, input.inputDimensions.map(function (_a) {
var height = _a[0], width = _a[1];
return ({ height: height, width: width });
}));
});
};
FaceLandmark68NetBase.prototype.forward = function (input) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var _a;
return tslib_1.__generator(this, function (_b) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
});
};
FaceLandmark68NetBase.prototype.detectLandmarks = function (input) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var _this = this;
var netInput, landmarkTensors, landmarksForBatch;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1:
netInput = _a.sent();
landmarkTensors = tf.tidy(function () { return tf.unstack(_this.forwardInput(netInput)); });
return [4 /*yield*/, Promise.all(landmarkTensors.map(function (landmarkTensor, batchIdx) { return tslib_1.__awaiter(_this, void 0, void 0, function () {
var landmarksArray, _a, _b, xCoords, yCoords;
return tslib_1.__generator(this, function (_c) {
switch (_c.label) {
case 0:
_b = (_a = Array).from;
return [4 /*yield*/, landmarkTensor.data()];
case 1:
landmarksArray = _b.apply(_a, [_c.sent()]);
xCoords = landmarksArray.filter(function (_, i) { return tfjs_image_recognition_base_1.isEven(i); });
yCoords = landmarksArray.filter(function (_, i) { return !tfjs_image_recognition_base_1.isEven(i); });
return [2 /*return*/, new FaceLandmarks68_1.FaceLandmarks68(Array(68).fill(0).map(function (_, i) { return new tfjs_image_recognition_base_1.Point(xCoords[i], yCoords[i]); }), {
height: netInput.getInputHeight(batchIdx),
width: netInput.getInputWidth(batchIdx),
})];
}
});
}); }))];
case 2:
landmarksForBatch = _a.sent();
landmarkTensors.forEach(function (t) { return t.dispose(); });
return [2 /*return*/, netInput.isBatchInput
? landmarksForBatch
: landmarksForBatch[0]];
}
});
});
};
return FaceLandmark68NetBase;
}(tfjs_image_recognition_base_1.NeuralNetwork));
exports.FaceLandmark68NetBase = FaceLandmark68NetBase;
//# sourceMappingURL=FaceLandmark68NetBase.js.map
\ No newline at end of file
{"version":3,"file":"FaceLandmark68NetBase.js","sourceRoot":"","sources":["../../src/faceLandmarkNet/FaceLandmark68NetBase.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAwH;AAExH,8DAA6D;AAE7D;IAAsD,iDAAwB;IAK5E,+BAAY,KAAa;QAAzB,YACE,kBAAM,KAAK,CAAC,SAEb;QADC,KAAI,CAAC,MAAM,GAAG,KAAK,CAAA;;IACrB,CAAC;IAEM,sCAAM,GAAb,UAAc,CAAW;QACvB,MAAM,IAAI,KAAK,CAAI,IAAI,CAAC,MAAM,8BAA2B,CAAC,CAAA;IAC5D,CAAC;IAEM,2CAAW,GAAlB,UAAmB,MAAmB,EAAE,SAAiB,EAAE,kBAAgC;QAEzF,IAAM,eAAe,GAAG,kBAAkB,CAAC,GAAG,CAAC,UAAC,EAAiB;gBAAf,gBAAK,EAAE,kBAAM;YAC7D,IAAM,KAAK,GAAG,SAAS,GAAG,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,KAAK,CAAC,CAAA;YACjD,OAAO;gBACL,KAAK,EAAE,KAAK,GAAG,KAAK;gBACpB,MAAM,EAAE,MAAM,GAAG,KAAK;aACvB,CAAA;QACH,CAAC,CAAC,CAAA;QAEF,IAAM,SAAS,GAAG,eAAe,CAAC,MAAM,CAAA;QAExC,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,uBAAuB,GAAG,UAAC,KAAa,EAAE,KAAa;gBAC3D,OAAA,EAAE,CAAC,KAAK,CAAC;oBACP,EAAE,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,EAAE,KAAK,CAAC;oBACpB,EAAE,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,EAAE,KAAK,CAAC;iBACrB,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE;YAHzB,CAGyB,CAAA;YAE3B,IAAM,UAAU,GAAG,UAAC,QAAgB,EAAE,IAAuC;gBACrE,IAAA,8BAA6C,EAA3C,gBAAK,EAAE,kBAAM,CAA8B;gBACnD,OAAO,IAAI,CAAC,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;YAC/D,CAAC,CAAA;YACD,IAAM,WAAW,GAAG,UAAC,QAAgB,IAAK,OAAA,UAAU,CAAC,QAAQ,EAAE,UAAC,CAAC,EAAE,CAAC,IAAK,OAAA,CAAC,GAAG,CAAC,EAAL,CAAK,CAAC,EAArC,CAAqC,CAAA;YAC/E,IAAM,WAAW,GAAG,UAAC,QAAgB,IAAK,OAAA,UAAU,CAAC,QAAQ,EAAE,UAAC,CAAC,EAAE,CAAC,IAAK,OAAA,CAAC,GAAG,CAAC,EAAL,CAAK,CAAC,EAArC,CAAqC,CAAA;YAE/E,IAAM,eAAe,GAAG,MAAM;iBAC3B,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,CAAC,SAAS,EAAE,GAAG,CAAC,EAAE,SAAS,CAAC,CAAC;iBACzC,GAAG,CAAC,EAAE,CAAC,KAAK,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,EAAE,UAAC,CAAC,EAAE,QAAQ;gBACrD,OAAA,uBAAuB,CACrB,WAAW,CAAC,QAAQ,CAAC,EACrB,WAAW,CAAC,QAAQ,CAAC,CACtB;YAHD,CAGC,CACF,CAAC,CAAC;iBACF,GAAG,CAAC,EAAE,CAAC,KAAK,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,EAAE,UAAC,CAAC,EAAE,QAAQ;gBACrD,OAAA,uBAAuB,CACrB,eAAe,CAAC,QAAQ,CAAC,CAAC,KAAK,EAC/B,eAAe,CAAC,QAAQ,CAAC,CAAC,MAAM,CACjC;YAHD,CAGC,CACF,CAAC,CAAC,CAAA;YAEL,OAAO,eAA8B,CAAA;QACvC,CAAC,CAAC,CAAA;IACJ,CAAC;IAEM,4CAAY,GAAnB,UAAoB,KAAe;QAAnC,iBASC;QARC,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,GAAG,GAAG,KAAI,CAAC,MAAM,CAAC,KAAK,CAAC,CAAA;YAC9B,OAAO,KAAI,CAAC,WAAW,CACrB,GAAG,EACH,KAAK,CAAC,SAAmB,EACzB,KAAK,CAAC,eAAe,CAAC,GAAG,CAAC,UAAC,EAAe;oBAAd,cAAM,EAAE,aAAK;gBAAM,OAAA,CAAC,EAAE,MAAM,QAAA,EAAE,KAAK,OAAA,EAAE,CAAC;YAAnB,CAAmB,CAAC,CACpE,CAAA;QACH,CAAC,CAAC,CAAA;IACJ,CAAC;IAEY,uCAAO,GAApB,UAAqB,KAAgB;;;;;;wBAC5B,KAAA,IAAI,CAAC,YAAY,CAAA;wBAAC,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;4BAAhD,sBAAO,SAAA,IAAI,GAAc,SAAuB,EAAC,EAAA;;;;KAClD;IAEY,+CAAe,GAA5B,UAA6B,KAAgB;;;;;;4BAC1B,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;;wBAAlC,QAAQ,GAAG,SAAuB;wBAClC,eAAe,GAAG,EAAE,CAAC,IAAI,CAC7B,cAAM,OAAA,EAAE,CAAC,OAAO,CAAC,KAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,CAAC,EAAvC,CAAuC,CAC9C,CAAA;wBAEyB,qBAAM,OAAO,CAAC,GAAG,CAAC,eAAe,CAAC,GAAG,CAC7D,UAAO,cAAc,EAAE,QAAQ;;;;;4CACN,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;4CAAC,qBAAM,cAAc,CAAC,IAAI,EAAE,EAAA;;4CAAvD,cAAc,GAAG,cAAW,SAA2B,EAAC;4CACxD,OAAO,GAAG,cAAc,CAAC,MAAM,CAAC,UAAC,CAAC,EAAE,CAAC,IAAK,OAAA,oCAAM,CAAC,CAAC,CAAC,EAAT,CAAS,CAAC,CAAA;4CACpD,OAAO,GAAG,cAAc,CAAC,MAAM,CAAC,UAAC,CAAC,EAAE,CAAC,IAAK,OAAA,CAAC,oCAAM,CAAC,CAAC,CAAC,EAAV,CAAU,CAAC,CAAA;4CAE3D,sBAAO,IAAI,iCAAe,CACxB,KAAK,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,UAAC,CAAC,EAAE,CAAC,IAAK,OAAA,IAAI,mCAAK,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,EAAjC,CAAiC,CAAC,EAClE;oDACE,MAAM,EAAE,QAAQ,CAAC,cAAc,CAAC,QAAQ,CAAC;oDACzC,KAAK,EAAG,QAAQ,CAAC,aAAa,CAAC,QAAQ,CAAC;iDACzC,CACF,EAAA;;;iCACF,CACF,CAAC,EAAA;;wBAdI,iBAAiB,GAAG,SAcxB;wBAEF,eAAe,CAAC,OAAO,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,OAAO,EAAE,EAAX,CAAW,CAAC,CAAA;wBAEzC,sBAAO,QAAQ,CAAC,YAAY;gCAC1B,CAAC,CAAC,iBAAiB;gCACnB,CAAC,CAAC,iBAAiB,CAAC,CAAC,CAAC,EAAA;;;;KACzB;IACH,4BAAC;AAAD,CAAC,AAtGD,CAAsD,2CAAa,GAsGlE;AAtGY,sDAAqB"}
\ No newline at end of file
import { FaceLandmarkNet } from './FaceLandmarkNet';
export * from './FaceLandmarkNet';
import { FaceLandmark68Net } from './FaceLandmark68Net';
export * from './FaceLandmark68Net';
export declare class FaceLandmarkNet extends FaceLandmark68Net {
}
export declare function createFaceLandmarkNet(weights: Float32Array): FaceLandmarkNet;
export declare function faceLandmarkNet(weights: Float32Array): FaceLandmarkNet;
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var FaceLandmarkNet_1 = require("./FaceLandmarkNet");
tslib_1.__exportStar(require("./FaceLandmarkNet"), exports);
var FaceLandmark68Net_1 = require("./FaceLandmark68Net");
tslib_1.__exportStar(require("./FaceLandmark68Net"), exports);
var FaceLandmarkNet = /** @class */ (function (_super) {
tslib_1.__extends(FaceLandmarkNet, _super);
function FaceLandmarkNet() {
return _super !== null && _super.apply(this, arguments) || this;
}
return FaceLandmarkNet;
}(FaceLandmark68Net_1.FaceLandmark68Net));
exports.FaceLandmarkNet = FaceLandmarkNet;
function createFaceLandmarkNet(weights) {
var net = new FaceLandmarkNet_1.FaceLandmarkNet();
var net = new FaceLandmarkNet();
net.extractWeights(weights);
return net;
}
......
{"version":3,"file":"index.js","sourceRoot":"","sources":["../../src/faceLandmarkNet/index.ts"],"names":[],"mappings":";;;AAAA,qDAAoD;AAEpD,4DAAkC;AAElC,+BAAsC,OAAqB;IACzD,IAAM,GAAG,GAAG,IAAI,iCAAe,EAAE,CAAA;IACjC,GAAG,CAAC,cAAc,CAAC,OAAO,CAAC,CAAA;IAC3B,OAAO,GAAG,CAAA;AACZ,CAAC;AAJD,sDAIC;AAED,yBAAgC,OAAqB;IACnD,OAAO,CAAC,IAAI,CAAC,wGAAwG,CAAC,CAAA;IACtH,OAAO,qBAAqB,CAAC,OAAO,CAAC,CAAA;AACvC,CAAC;AAHD,0CAGC"}
\ No newline at end of file
{"version":3,"file":"index.js","sourceRoot":"","sources":["../../src/faceLandmarkNet/index.ts"],"names":[],"mappings":";;;AAAA,yDAAwD;AAExD,8DAAoC;AAEpC;IAAqC,2CAAiB;IAAtD;;IAAwD,CAAC;IAAD,sBAAC;AAAD,CAAC,AAAzD,CAAqC,qCAAiB,GAAG;AAA5C,0CAAe;AAE5B,+BAAsC,OAAqB;IACzD,IAAM,GAAG,GAAG,IAAI,eAAe,EAAE,CAAA;IACjC,GAAG,CAAC,cAAc,CAAC,OAAO,CAAC,CAAA;IAC3B,OAAO,GAAG,CAAA;AACZ,CAAC;AAJD,sDAIC;AAED,yBAAgC,OAAqB;IACnD,OAAO,CAAC,IAAI,CAAC,wGAAwG,CAAC,CAAA;IACtH,OAAO,qBAAqB,CAAC,OAAO,CAAC,CAAA;AACvC,CAAC;AAHD,0CAGC"}
\ No newline at end of file
......@@ -18,7 +18,7 @@ var FaceRecognitionNet = /** @class */ (function (_super) {
throw new Error('FaceRecognitionNet - load model before inference');
}
return tf.tidy(function () {
var batchTensor = input.toBatchTensor(150, true);
var batchTensor = input.toBatchTensor(150, true).toFloat();
var meanRgb = [122.782, 117.001, 104.298];
var normalized = tfjs_image_recognition_base_1.normalize(batchTensor, meanRgb).div(tf.scalar(256));
var out = convLayer_1.convDown(normalized, params.conv32_down);
......@@ -49,7 +49,7 @@ var FaceRecognitionNet = /** @class */ (function (_super) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
......@@ -61,7 +61,7 @@ var FaceRecognitionNet = /** @class */ (function (_super) {
var netInput, faceDescriptorTensors, faceDescriptorsForBatch;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true)];
case 0: return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1:
netInput = _a.sent();
faceDescriptorTensors = tf.tidy(function () { return tf.unstack(_this.forwardInput(netInput)); });
......
{"version":3,"file":"FaceRecognitionNet.js","sourceRoot":"","sources":["../../src/faceRecognitionNet/FaceRecognitionNet.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAwG;AAExG,yCAAuC;AACvC,iDAAgD;AAChD,6DAA4D;AAC5D,iDAAyD;AAIzD;IAAwC,8CAAwB;IAE9D;eACE,kBAAM,oBAAoB,CAAC;IAC7B,CAAC;IAEM,yCAAY,GAAnB,UAAoB,KAAe;QAEzB,IAAA,oBAAM,CAAS;QAEvB,IAAI,CAAC,MAAM,EAAE;YACX,MAAM,IAAI,KAAK,CAAC,kDAAkD,CAAC,CAAA;SACpE;QAED,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,WAAW,GAAG,KAAK,CAAC,aAAa,CAAC,GAAG,EAAE,IAAI,CAAC,CAAA;YAElD,IAAM,OAAO,GAAG,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAA;YAC3C,IAAM,UAAU,GAAG,uCAAS,CAAC,WAAW,EAAE,OAAO,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,MAAM,CAAC,GAAG,CAAC,CAAgB,CAAA;YAErF,IAAI,GAAG,GAAG,oBAAQ,CAAC,UAAU,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAClD,GAAG,GAAG,EAAE,CAAC,OAAO,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAA;YAEpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAC3C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YAErC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,gBAAgB,CAAC,CAAA;YAEhD,IAAM,SAAS,GAAG,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAgB,CAAA;YACjD,IAAM,cAAc,GAAG,EAAE,CAAC,MAAM,CAAC,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC,CAAA;YAEtD,OAAO,cAAc,CAAA;QACvB,CAAC,CAAC,CAAA;IACJ,CAAC;IAEY,oCAAO,GAApB,UAAqB,KAAgB;;;;;;wBAC5B,KAAA,IAAI,CAAC,YAAY,CAAA;wBAAC,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;4BAAtD,sBAAO,SAAA,IAAI,GAAc,SAA6B,EAAC,EAAA;;;;KACxD;IAEY,kDAAqB,GAAlC,UAAmC,KAAgB;;;;;;4BAChC,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,CAAC,EAAA;;wBAAxC,QAAQ,GAAG,SAA6B;wBAExC,qBAAqB,GAAG,EAAE,CAAC,IAAI,CACnC,cAAM,OAAA,EAAE,CAAC,OAAO,CAAC,KAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,CAAC,EAAvC,CAAuC,CAC9C,CAAA;wBAE+B,qBAAM,OAAO,CAAC,GAAG,CAAC,qBAAqB,CAAC,GAAG,CACzE,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,IAAI,EAAE,EAAR,CAAQ,CACd,CAAC,EAAA;;wBAFI,uBAAuB,GAAG,SAEZ;wBAEpB,qBAAqB,CAAC,OAAO,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,OAAO,EAAE,EAAX,CAAW,CAAC,CAAA;wBAE/C,sBAAO,QAAQ,CAAC,YAAY;gCAC1B,CAAC,CAAC,uBAAuB;gCACzB,CAAC,CAAC,uBAAuB,CAAC,CAAC,CAAC,EAAA;;;;KAC/B;IAES,gDAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,0CAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,yBAAC;AAAD,CAAC,AA7ED,CAAwC,2CAAa,GA6EpD;AA7EY,gDAAkB"}
\ No newline at end of file
{"version":3,"file":"FaceRecognitionNet.js","sourceRoot":"","sources":["../../src/faceRecognitionNet/FaceRecognitionNet.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAwG;AAExG,yCAAuC;AACvC,iDAAgD;AAChD,6DAA4D;AAC5D,iDAAyD;AAIzD;IAAwC,8CAAwB;IAE9D;eACE,kBAAM,oBAAoB,CAAC;IAC7B,CAAC;IAEM,yCAAY,GAAnB,UAAoB,KAAe;QAEzB,IAAA,oBAAM,CAAS;QAEvB,IAAI,CAAC,MAAM,EAAE;YACX,MAAM,IAAI,KAAK,CAAC,kDAAkD,CAAC,CAAA;SACpE;QAED,OAAO,EAAE,CAAC,IAAI,CAAC;YACb,IAAM,WAAW,GAAG,KAAK,CAAC,aAAa,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC,OAAO,EAAE,CAAA;YAE5D,IAAM,OAAO,GAAG,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAA;YAC3C,IAAM,UAAU,GAAG,uCAAS,CAAC,WAAW,EAAE,OAAO,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,MAAM,CAAC,GAAG,CAAC,CAAgB,CAAA;YAErF,IAAI,GAAG,GAAG,oBAAQ,CAAC,UAAU,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAClD,GAAG,GAAG,EAAE,CAAC,OAAO,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAA;YAEpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,WAAW,CAAC,CAAA;YAC3C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YACpC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,QAAQ,CAAC,CAAA;YAEpC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YAErC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,YAAY,CAAC,CAAA;YAC5C,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,wBAAQ,CAAC,GAAG,EAAE,MAAM,CAAC,SAAS,CAAC,CAAA;YACrC,GAAG,GAAG,4BAAY,CAAC,GAAG,EAAE,MAAM,CAAC,gBAAgB,CAAC,CAAA;YAEhD,IAAM,SAAS,GAAG,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAgB,CAAA;YACjD,IAAM,cAAc,GAAG,EAAE,CAAC,MAAM,CAAC,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC,CAAA;YAEtD,OAAO,cAAc,CAAA;QACvB,CAAC,CAAC,CAAA;IACJ,CAAC;IAEY,oCAAO,GAApB,UAAqB,KAAgB;;;;;;wBAC5B,KAAA,IAAI,CAAC,YAAY,CAAA;wBAAC,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;4BAAhD,sBAAO,SAAA,IAAI,GAAc,SAAuB,EAAC,EAAA;;;;KAClD;IAEY,kDAAqB,GAAlC,UAAmC,KAAgB;;;;;;4BAChC,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;;wBAAlC,QAAQ,GAAG,SAAuB;wBAElC,qBAAqB,GAAG,EAAE,CAAC,IAAI,CACnC,cAAM,OAAA,EAAE,CAAC,OAAO,CAAC,KAAI,CAAC,YAAY,CAAC,QAAQ,CAAC,CAAC,EAAvC,CAAuC,CAC9C,CAAA;wBAE+B,qBAAM,OAAO,CAAC,GAAG,CAAC,qBAAqB,CAAC,GAAG,CACzE,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,IAAI,EAAE,EAAR,CAAQ,CACd,CAAC,EAAA;;wBAFI,uBAAuB,GAAG,SAEZ;wBAEpB,qBAAqB,CAAC,OAAO,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,OAAO,EAAE,EAAX,CAAW,CAAC,CAAA;wBAE/C,sBAAO,QAAQ,CAAC,YAAY;gCAC1B,CAAC,CAAC,uBAAuB;gCACzB,CAAC,CAAC,uBAAuB,CAAC,CAAC,CAAC,EAAA;;;;KAC/B;IAES,gDAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,0CAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,yBAAC;AAAD,CAAC,AA7ED,CAAwC,2CAAa,GA6EpD;AA7EY,gDAAkB"}
\ No newline at end of file
......@@ -5,17 +5,17 @@ import { FaceDetection } from './classes/FaceDetection';
import { FaceLandmarks68 } from './classes/FaceLandmarks68';
import { FullFaceDescription } from './classes/FullFaceDescription';
import { FaceDetectionNet } from './faceDetectionNet/FaceDetectionNet';
import { FaceLandmarkNet } from './faceLandmarkNet/FaceLandmarkNet';
import { FaceLandmark68Net } from './faceLandmarkNet/FaceLandmark68Net';
import { FaceRecognitionNet } from './faceRecognitionNet/FaceRecognitionNet';
import { Mtcnn } from './mtcnn/Mtcnn';
import { MtcnnForwardParams, MtcnnResult } from './mtcnn/types';
import { TinyYolov2 } from './tinyYolov2/TinyYolov2';
export declare const detectionNet: FaceDetectionNet;
export declare const landmarkNet: FaceLandmarkNet;
export declare const landmarkNet: FaceLandmark68Net;
export declare const recognitionNet: FaceRecognitionNet;
export declare const nets: {
ssdMobilenetv1: FaceDetectionNet;
faceLandmark68Net: FaceLandmarkNet;
faceLandmark68Net: FaceLandmark68Net;
faceRecognitionNet: FaceRecognitionNet;
mtcnn: Mtcnn;
tinyYolov2: TinyYolov2;
......
......@@ -2,12 +2,12 @@
Object.defineProperty(exports, "__esModule", { value: true });
var allFacesFactory_1 = require("./allFacesFactory");
var FaceDetectionNet_1 = require("./faceDetectionNet/FaceDetectionNet");
var FaceLandmarkNet_1 = require("./faceLandmarkNet/FaceLandmarkNet");
var FaceLandmark68Net_1 = require("./faceLandmarkNet/FaceLandmark68Net");
var FaceRecognitionNet_1 = require("./faceRecognitionNet/FaceRecognitionNet");
var Mtcnn_1 = require("./mtcnn/Mtcnn");
var TinyYolov2_1 = require("./tinyYolov2/TinyYolov2");
exports.detectionNet = new FaceDetectionNet_1.FaceDetectionNet();
exports.landmarkNet = new FaceLandmarkNet_1.FaceLandmarkNet();
exports.landmarkNet = new FaceLandmark68Net_1.FaceLandmark68Net();
exports.recognitionNet = new FaceRecognitionNet_1.FaceRecognitionNet();
// nets need more specific names, to avoid ambiguity in future
// when alternative net implementations are provided
......
{"version":3,"file":"globalApi.js","sourceRoot":"","sources":["../src/globalApi.ts"],"names":[],"mappings":";;AAIA,qDAAmH;AAInH,wEAAuE;AACvE,qEAAoE;AACpE,8EAA6E;AAC7E,uCAAsC;AAEtC,sDAAqD;AAExC,QAAA,YAAY,GAAG,IAAI,mCAAgB,EAAE,CAAA;AACrC,QAAA,WAAW,GAAG,IAAI,iCAAe,EAAE,CAAA;AACnC,QAAA,cAAc,GAAG,IAAI,uCAAkB,EAAE,CAAA;AAEtD,8DAA8D;AAC9D,oDAAoD;AACvC,QAAA,IAAI,GAAG;IAClB,cAAc,EAAE,oBAAY;IAC5B,iBAAiB,EAAE,mBAAW;IAC9B,kBAAkB,EAAE,sBAAc;IAClC,KAAK,EAAE,IAAI,aAAK,EAAE;IAClB,UAAU,EAAE,IAAI,uBAAU,EAAE;CAC7B,CAAA;AAED,iCAAwC,GAAW;IACjD,OAAO,YAAI,CAAC,cAAc,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AACtC,CAAC;AAFD,0DAEC;AAED,+BAAsC,GAAW;IAC/C,OAAO,YAAI,CAAC,iBAAiB,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AACzC,CAAC;AAFD,sDAEC;AAED,kCAAyC,GAAW;IAClD,OAAO,YAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAC1C,CAAC;AAFD,4DAEC;AAED,wBAA+B,GAAW;IACxC,OAAO,YAAI,CAAC,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAC7B,CAAC;AAFD,wCAEC;AAED,6BAAoC,GAAW;IAC7C,OAAO,YAAI,CAAC,UAAU,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAClC,CAAC;AAFD,kDAEC;AAED,gCAAuC,GAAW;IAChD,OAAO,uBAAuB,CAAC,GAAG,CAAC,CAAA;AACrC,CAAC;AAFD,wDAEC;AAED,oBAA2B,GAAW;IACpC,OAAO,OAAO,CAAC,GAAG,CAAC;QACjB,uBAAuB,CAAC,GAAG,CAAC;QAC5B,qBAAqB,CAAC,GAAG,CAAC;QAC1B,wBAAwB,CAAC,GAAG,CAAC;QAC7B,cAAc,CAAC,GAAG,CAAC;QACnB,mBAAmB,CAAC,GAAG,CAAC;KACzB,CAAC,CAAA;AACJ,CAAC;AARD,gCAQC;AAED,qBACE,KAAgB,EAChB,aAAsB,EACtB,UAAmB;IAEnB,OAAO,YAAI,CAAC,cAAc,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,EAAE,UAAU,CAAC,CAAA;AAC1E,CAAC;AAND,kCAMC;AAEY,QAAA,cAAc,GAAG,WAAW,CAAA;AAEzC,yBACE,KAAgB;IAEhB,OAAO,YAAI,CAAC,iBAAiB,CAAC,eAAe,CAAC,KAAK,CAAC,CAAA;AACtD,CAAC;AAJD,0CAIC;AAED,+BACE,KAAgB;IAEhB,OAAO,YAAI,CAAC,kBAAkB,CAAC,qBAAqB,CAAC,KAAK,CAAC,CAAA;AAC7D,CAAC;AAJD,sDAIC;AAED,eACE,KAAgB,EAChB,aAAiC;IAEjC,OAAO,YAAI,CAAC,KAAK,CAAC,OAAO,CAAC,KAAK,EAAE,aAAa,CAAC,CAAA;AACjD,CAAC;AALD,sBAKC;AAED,oBACE,KAAgB,EAChB,aAAsD;IAEtD,OAAO,YAAI,CAAC,UAAU,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,CAAA;AAC1D,CAAC;AALD,gCAKC;AAQY,QAAA,sBAAsB,GAAmC,+CAA6B,CACjG,YAAI,CAAC,cAAc,EACnB,YAAI,CAAC,iBAAiB,EACtB,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAQY,QAAA,kBAAkB,GAA+B,2CAAyB,CACrF,YAAI,CAAC,UAAU,EACf,YAAI,CAAC,iBAAiB,EACtB,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAQY,QAAA,aAAa,GAA0B,sCAAoB,CACtE,YAAI,CAAC,KAAK,EACV,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAEY,QAAA,QAAQ,GAAG,8BAAsB,CAAA"}
\ No newline at end of file
{"version":3,"file":"globalApi.js","sourceRoot":"","sources":["../src/globalApi.ts"],"names":[],"mappings":";;AAIA,qDAAmH;AAInH,wEAAuE;AACvE,yEAAwE;AACxE,8EAA6E;AAC7E,uCAAsC;AAEtC,sDAAqD;AAExC,QAAA,YAAY,GAAG,IAAI,mCAAgB,EAAE,CAAA;AACrC,QAAA,WAAW,GAAG,IAAI,qCAAiB,EAAE,CAAA;AACrC,QAAA,cAAc,GAAG,IAAI,uCAAkB,EAAE,CAAA;AAEtD,8DAA8D;AAC9D,oDAAoD;AACvC,QAAA,IAAI,GAAG;IAClB,cAAc,EAAE,oBAAY;IAC5B,iBAAiB,EAAE,mBAAW;IAC9B,kBAAkB,EAAE,sBAAc;IAClC,KAAK,EAAE,IAAI,aAAK,EAAE;IAClB,UAAU,EAAE,IAAI,uBAAU,EAAE;CAC7B,CAAA;AAED,iCAAwC,GAAW;IACjD,OAAO,YAAI,CAAC,cAAc,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AACtC,CAAC;AAFD,0DAEC;AAED,+BAAsC,GAAW;IAC/C,OAAO,YAAI,CAAC,iBAAiB,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AACzC,CAAC;AAFD,sDAEC;AAED,kCAAyC,GAAW;IAClD,OAAO,YAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAC1C,CAAC;AAFD,4DAEC;AAED,wBAA+B,GAAW;IACxC,OAAO,YAAI,CAAC,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAC7B,CAAC;AAFD,wCAEC;AAED,6BAAoC,GAAW;IAC7C,OAAO,YAAI,CAAC,UAAU,CAAC,IAAI,CAAC,GAAG,CAAC,CAAA;AAClC,CAAC;AAFD,kDAEC;AAED,gCAAuC,GAAW;IAChD,OAAO,uBAAuB,CAAC,GAAG,CAAC,CAAA;AACrC,CAAC;AAFD,wDAEC;AAED,oBAA2B,GAAW;IACpC,OAAO,OAAO,CAAC,GAAG,CAAC;QACjB,uBAAuB,CAAC,GAAG,CAAC;QAC5B,qBAAqB,CAAC,GAAG,CAAC;QAC1B,wBAAwB,CAAC,GAAG,CAAC;QAC7B,cAAc,CAAC,GAAG,CAAC;QACnB,mBAAmB,CAAC,GAAG,CAAC;KACzB,CAAC,CAAA;AACJ,CAAC;AARD,gCAQC;AAED,qBACE,KAAgB,EAChB,aAAsB,EACtB,UAAmB;IAEnB,OAAO,YAAI,CAAC,cAAc,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,EAAE,UAAU,CAAC,CAAA;AAC1E,CAAC;AAND,kCAMC;AAEY,QAAA,cAAc,GAAG,WAAW,CAAA;AAEzC,yBACE,KAAgB;IAEhB,OAAO,YAAI,CAAC,iBAAiB,CAAC,eAAe,CAAC,KAAK,CAAC,CAAA;AACtD,CAAC;AAJD,0CAIC;AAED,+BACE,KAAgB;IAEhB,OAAO,YAAI,CAAC,kBAAkB,CAAC,qBAAqB,CAAC,KAAK,CAAC,CAAA;AAC7D,CAAC;AAJD,sDAIC;AAED,eACE,KAAgB,EAChB,aAAiC;IAEjC,OAAO,YAAI,CAAC,KAAK,CAAC,OAAO,CAAC,KAAK,EAAE,aAAa,CAAC,CAAA;AACjD,CAAC;AALD,sBAKC;AAED,oBACE,KAAgB,EAChB,aAAsD;IAEtD,OAAO,YAAI,CAAC,UAAU,CAAC,WAAW,CAAC,KAAK,EAAE,aAAa,CAAC,CAAA;AAC1D,CAAC;AALD,gCAKC;AAQY,QAAA,sBAAsB,GAAmC,+CAA6B,CACjG,YAAI,CAAC,cAAc,EACnB,YAAI,CAAC,iBAAiB,EACtB,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAQY,QAAA,kBAAkB,GAA+B,2CAAyB,CACrF,YAAI,CAAC,UAAU,EACf,YAAI,CAAC,iBAAiB,EACtB,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAQY,QAAA,aAAa,GAA0B,sCAAoB,CACtE,YAAI,CAAC,KAAK,EACV,YAAI,CAAC,kBAAkB,CACxB,CAAA;AAEY,QAAA,QAAQ,GAAG,8BAAsB,CAAA"}
\ No newline at end of file
......@@ -23,7 +23,7 @@ var Mtcnn = /** @class */ (function (_super) {
Mtcnn.prototype.forwardInput = function (input, forwardParams) {
if (forwardParams === void 0) { forwardParams = {}; }
return tslib_1.__awaiter(this, void 0, void 0, function () {
var params, inputTensor, inputCanvas, stats, tsTotal, imgTensor, onReturn, _a, height, width, _b, minFaceSize, scaleFactor, maxNumScales, scoreThresholds, scaleSteps, scales, ts, out1, out2, out3, results;
var params, inputCanvas, stats, tsTotal, imgTensor, onReturn, _a, height, width, _b, minFaceSize, scaleFactor, maxNumScales, scoreThresholds, scaleSteps, scales, ts, out1, out2, out3, results;
return tslib_1.__generator(this, function (_c) {
switch (_c.label) {
case 0:
......@@ -31,7 +31,6 @@ var Mtcnn = /** @class */ (function (_super) {
if (!params) {
throw new Error('Mtcnn - load model before inference');
}
inputTensor = input.inputs[0];
inputCanvas = input.canvases[0];
if (!inputCanvas) {
throw new Error('Mtcnn - inputCanvas is not defined, note that passing tensors into Mtcnn.forwardInput is not supported yet.');
......@@ -39,12 +38,11 @@ var Mtcnn = /** @class */ (function (_super) {
stats = {};
tsTotal = Date.now();
imgTensor = tf.tidy(function () {
return bgrToRgbTensor_1.bgrToRgbTensor(tf.expandDims(inputTensor).toFloat());
return bgrToRgbTensor_1.bgrToRgbTensor(tf.expandDims(tf.fromPixels(inputCanvas)).toFloat());
});
onReturn = function (results) {
// dispose tensors on return
imgTensor.dispose();
input.dispose();
stats.total = Date.now() - tsTotal;
return results;
};
......@@ -103,7 +101,7 @@ var Mtcnn = /** @class */ (function (_super) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true, true)];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1: return [4 /*yield*/, _a.apply(this, [_b.sent(),
forwardParams])];
case 2: return [2 /*return*/, (_b.sent()).results];
......@@ -119,7 +117,7 @@ var Mtcnn = /** @class */ (function (_super) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input, true, true)];
return [4 /*yield*/, tfjs_image_recognition_base_1.toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent(),
forwardParams])];
}
......
{"version":3,"file":"Mtcnn.js","sourceRoot":"","sources":["../../src/mtcnn/Mtcnn.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAA0G;AAE1G,0DAAyD;AACzD,4DAA2D;AAC3D,mDAAkD;AAClD,mCAAqC;AACrC,iDAAgD;AAChD,+EAA8E;AAC9E,uDAAsD;AACtD,6DAA4D;AAC5D,6CAA4C;AAC5C,mCAAkC;AAClC,mCAAkC;AAClC,mCAAkC;AAGlC;IAA2B,iCAAwB;IAEjD;eACE,kBAAM,OAAO,CAAC;IAChB,CAAC;IAEY,4BAAY,GAAzB,UACE,KAAe,EACf,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAG9B,MAAM,GAAK,IAAI,OAAT,CAAS;wBAEvB,IAAI,CAAC,MAAM,EAAE;4BACX,MAAM,IAAI,KAAK,CAAC,qCAAqC,CAAC,CAAA;yBACvD;wBAEK,WAAW,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAA;wBAC7B,WAAW,GAAG,KAAK,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAA;wBAErC,IAAI,CAAC,WAAW,EAAE;4BAChB,MAAM,IAAI,KAAK,CAAC,6GAA6G,CAAC,CAAA;yBAC/H;wBAEK,KAAK,GAAQ,EAAE,CAAA;wBAEf,OAAO,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBAEpB,SAAS,GAAG,EAAE,CAAC,IAAI,CAAC;4BACxB,OAAA,+BAAc,CACZ,EAAE,CAAC,UAAU,CAAC,WAAW,CAAC,CAAC,OAAO,EAAiB,CACpD;wBAFD,CAEC,CACF,CAAA;wBAEK,QAAQ,GAAG,UAAC,OAAY;4BAC5B,4BAA4B;4BAC5B,SAAS,CAAC,OAAO,EAAE,CAAA;4BACnB,KAAK,CAAC,OAAO,EAAE,CAAA;4BACf,KAAK,CAAC,KAAK,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,OAAO,CAAA;4BAClC,OAAO,OAAO,CAAA;wBAChB,CAAC,CAAA;wBAEK,KAAkB,SAAS,CAAC,KAAK,CAAC,KAAK,CAAC,CAAC,CAAC,EAAzC,MAAM,QAAA,EAAE,KAAK,QAAA,CAA4B;wBAE1C,KAMF,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,2DAA4B,EAAE,EAAE,aAAa,CAAC,EALlE,WAAW,iBAAA,EACX,WAAW,iBAAA,EACX,YAAY,kBAAA,EACZ,eAAe,qBAAA,EACf,UAAU,gBAAA,CACwD;wBAE9D,MAAM,GAAG,CAAC,UAAU,IAAI,yBAAW,CAAC,WAAW,EAAE,WAAW,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAC;6BAClF,MAAM,CAAC,UAAA,KAAK;4BACX,IAAM,KAAK,GAAG,mCAAgB,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAA;4BACtD,OAAO,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,KAAK,EAAE,KAAK,CAAC,MAAM,CAAC,GAAG,kBAAS,CAAA;wBACxD,CAAC,CAAC;6BACD,KAAK,CAAC,CAAC,EAAE,YAAY,CAAC,CAAA;wBAEzB,KAAK,CAAC,MAAM,GAAG,MAAM,CAAA;wBACrB,KAAK,CAAC,OAAO,GAAG,MAAM,CAAC,GAAG,CAAC,UAAA,KAAK,IAAI,OAAA,mCAAgB,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,EAAxC,CAAwC,CAAC,CAAA;wBAEzE,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACN,qBAAM,eAAM,CAAC,SAAS,EAAE,MAAM,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAA9E,IAAI,GAAG,SAAuE;wBACpF,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAEpC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE;4BACtB,sBAAO,QAAQ,CAAC,EAAE,OAAO,EAAE,EAAE,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;yBACxC;wBAED,KAAK,CAAC,oBAAoB,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAA;wBAC9C,oFAAoF;wBACpF,6BAA6B;wBAC7B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACF,qBAAM,eAAM,CAAC,WAAW,EAAE,IAAI,CAAC,KAAK,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAApF,IAAI,GAAG,SAA6E;wBAC1F,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAEpC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE;4BACtB,sBAAO,QAAQ,CAAC,EAAE,OAAO,EAAE,EAAE,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;yBACxC;wBAED,KAAK,CAAC,oBAAoB,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAA;wBAE9C,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACF,qBAAM,eAAM,CAAC,WAAW,EAAE,IAAI,CAAC,KAAK,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAApF,IAAI,GAAG,SAA6E;wBAC1F,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAE9B,OAAO,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,GAAG,IAAK,OAAA,CAAC;4BAC5C,aAAa,EAAE,IAAI,6BAAa,CAC9B,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,EAChB,IAAI,kCAAI,CACN,GAAG,CAAC,IAAI,GAAG,KAAK,EAChB,GAAG,CAAC,GAAG,GAAG,MAAM,EAChB,GAAG,CAAC,KAAK,GAAG,KAAK,EACjB,GAAG,CAAC,MAAM,GAAG,MAAM,CACpB,EACD;gCACE,MAAM,QAAA;gCACN,KAAK,OAAA;6BACN,CACF;4BACD,aAAa,EAAE,IAAI,+BAAc,CAC/B,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,UAAA,EAAE,IAAI,OAAA,EAAE,CAAC,GAAG,CAAC,IAAI,mCAAK,CAAC,KAAK,EAAE,MAAM,CAAC,CAAC,EAAhC,CAAgC,CAAC,EAC5D,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAClB;yBACF,CAAC,EAlB2C,CAkB3C,CAAC,CAAA;wBAEH,sBAAO,QAAQ,CAAC,EAAE,OAAO,SAAA,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;;;;KACpC;IAEY,uBAAO,GAApB,UACE,KAAgB,EAChB,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAG9B,KAAA,IAAI,CAAC,YAAY,CAAA;wBACrB,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,EAAA;4BADrC,qBAAM,SAAA,IAAI,GACR,SAAmC;4BACnC,aAAa,EACd,EAAA;4BAJH,sBAAO,CACL,SAGC,CACF,CAAC,OAAO,EAAA;;;;KACV;IAEY,gCAAgB,GAA7B,UACE,KAAgB,EAChB,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAE/B,KAAA,IAAI,CAAC,YAAY,CAAA;wBACtB,qBAAM,wCAAU,CAAC,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,EAAA;4BADrC,sBAAO,SAAA,IAAI,GACT,SAAmC;4BACnC,aAAa,EACd,EAAA;;;;KACF;IAED,8CAA8C;IACpC,mCAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,6BAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,YAAC;AAAD,CAAC,AA5ID,CAA2B,2CAAa,GA4IvC;AA5IY,sBAAK"}
\ No newline at end of file
{"version":3,"file":"Mtcnn.js","sourceRoot":"","sources":["../../src/mtcnn/Mtcnn.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAA0G;AAE1G,0DAAyD;AACzD,4DAA2D;AAC3D,mDAAkD;AAClD,mCAAqC;AACrC,iDAAgD;AAChD,+EAA8E;AAC9E,uDAAsD;AACtD,6DAA4D;AAC5D,6CAA4C;AAC5C,mCAAkC;AAClC,mCAAkC;AAClC,mCAAkC;AAGlC;IAA2B,iCAAwB;IAEjD;eACE,kBAAM,OAAO,CAAC;IAChB,CAAC;IAEY,4BAAY,GAAzB,UACE,KAAe,EACf,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAG9B,MAAM,GAAK,IAAI,OAAT,CAAS;wBAEvB,IAAI,CAAC,MAAM,EAAE;4BACX,MAAM,IAAI,KAAK,CAAC,qCAAqC,CAAC,CAAA;yBACvD;wBAEK,WAAW,GAAG,KAAK,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAA;wBAErC,IAAI,CAAC,WAAW,EAAE;4BAChB,MAAM,IAAI,KAAK,CAAC,6GAA6G,CAAC,CAAA;yBAC/H;wBAEK,KAAK,GAAQ,EAAE,CAAA;wBAEf,OAAO,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBAEpB,SAAS,GAAG,EAAE,CAAC,IAAI,CAAC;4BACxB,OAAA,+BAAc,CACZ,EAAE,CAAC,UAAU,CAAC,EAAE,CAAC,UAAU,CAAC,WAAW,CAAC,CAAC,CAAC,OAAO,EAAiB,CACnE;wBAFD,CAEC,CACF,CAAA;wBAEK,QAAQ,GAAG,UAAC,OAAY;4BAC5B,4BAA4B;4BAC5B,SAAS,CAAC,OAAO,EAAE,CAAA;4BACnB,KAAK,CAAC,KAAK,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,OAAO,CAAA;4BAClC,OAAO,OAAO,CAAA;wBAChB,CAAC,CAAA;wBAEK,KAAkB,SAAS,CAAC,KAAK,CAAC,KAAK,CAAC,CAAC,CAAC,EAAzC,MAAM,QAAA,EAAE,KAAK,QAAA,CAA4B;wBAE1C,KAMF,MAAM,CAAC,MAAM,CAAC,EAAE,EAAE,2DAA4B,EAAE,EAAE,aAAa,CAAC,EALlE,WAAW,iBAAA,EACX,WAAW,iBAAA,EACX,YAAY,kBAAA,EACZ,eAAe,qBAAA,EACf,UAAU,gBAAA,CACwD;wBAE9D,MAAM,GAAG,CAAC,UAAU,IAAI,yBAAW,CAAC,WAAW,EAAE,WAAW,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAC;6BAClF,MAAM,CAAC,UAAA,KAAK;4BACX,IAAM,KAAK,GAAG,mCAAgB,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAA;4BACtD,OAAO,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,KAAK,EAAE,KAAK,CAAC,MAAM,CAAC,GAAG,kBAAS,CAAA;wBACxD,CAAC,CAAC;6BACD,KAAK,CAAC,CAAC,EAAE,YAAY,CAAC,CAAA;wBAEzB,KAAK,CAAC,MAAM,GAAG,MAAM,CAAA;wBACrB,KAAK,CAAC,OAAO,GAAG,MAAM,CAAC,GAAG,CAAC,UAAA,KAAK,IAAI,OAAA,mCAAgB,CAAC,KAAK,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,EAAxC,CAAwC,CAAC,CAAA;wBAEzE,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACN,qBAAM,eAAM,CAAC,SAAS,EAAE,MAAM,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAA9E,IAAI,GAAG,SAAuE;wBACpF,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAEpC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE;4BACtB,sBAAO,QAAQ,CAAC,EAAE,OAAO,EAAE,EAAE,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;yBACxC;wBAED,KAAK,CAAC,oBAAoB,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAA;wBAC9C,oFAAoF;wBACpF,6BAA6B;wBAC7B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACF,qBAAM,eAAM,CAAC,WAAW,EAAE,IAAI,CAAC,KAAK,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAApF,IAAI,GAAG,SAA6E;wBAC1F,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAEpC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE;4BACtB,sBAAO,QAAQ,CAAC,EAAE,OAAO,EAAE,EAAE,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;yBACxC;wBAED,KAAK,CAAC,oBAAoB,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAA;wBAE9C,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACF,qBAAM,eAAM,CAAC,WAAW,EAAE,IAAI,CAAC,KAAK,EAAE,eAAe,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,KAAK,CAAC,EAAA;;wBAApF,IAAI,GAAG,SAA6E;wBAC1F,KAAK,CAAC,YAAY,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAE9B,OAAO,GAAG,IAAI,CAAC,KAAK,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,GAAG,IAAK,OAAA,CAAC;4BAC5C,aAAa,EAAE,IAAI,6BAAa,CAC9B,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,EAChB,IAAI,kCAAI,CACN,GAAG,CAAC,IAAI,GAAG,KAAK,EAChB,GAAG,CAAC,GAAG,GAAG,MAAM,EAChB,GAAG,CAAC,KAAK,GAAG,KAAK,EACjB,GAAG,CAAC,MAAM,GAAG,MAAM,CACpB,EACD;gCACE,MAAM,QAAA;gCACN,KAAK,OAAA;6BACN,CACF;4BACD,aAAa,EAAE,IAAI,+BAAc,CAC/B,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,UAAA,EAAE,IAAI,OAAA,EAAE,CAAC,GAAG,CAAC,IAAI,mCAAK,CAAC,KAAK,EAAE,MAAM,CAAC,CAAC,EAAhC,CAAgC,CAAC,EAC5D,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAClB;yBACF,CAAC,EAlB2C,CAkB3C,CAAC,CAAA;wBAEH,sBAAO,QAAQ,CAAC,EAAE,OAAO,SAAA,EAAE,KAAK,OAAA,EAAE,CAAC,EAAA;;;;KACpC;IAEY,uBAAO,GAApB,UACE,KAAgB,EAChB,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAG9B,KAAA,IAAI,CAAC,YAAY,CAAA;wBACrB,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;4BADzB,qBAAM,SAAA,IAAI,GACR,SAAuB;4BACvB,aAAa,EACd,EAAA;4BAJH,sBAAO,CACL,SAGC,CACF,CAAC,OAAO,EAAA;;;;KACV;IAEY,gCAAgB,GAA7B,UACE,KAAgB,EAChB,aAAsC;QAAtC,8BAAA,EAAA,kBAAsC;;;;;;wBAE/B,KAAA,IAAI,CAAC,YAAY,CAAA;wBACtB,qBAAM,wCAAU,CAAC,KAAK,CAAC,EAAA;4BADzB,sBAAO,SAAA,IAAI,GACT,SAAuB;4BACvB,aAAa,EACd,EAAA;;;;KACF;IAED,8CAA8C;IACpC,mCAAmB,GAA7B,UAA8B,GAAuB;QACnD,OAAO,yCAAmB,CAAC,GAAG,CAAC,CAAA;IACjC,CAAC;IAES,6BAAa,GAAvB,UAAwB,OAAqB;QAC3C,OAAO,6BAAa,CAAC,OAAO,CAAC,CAAA;IAC/B,CAAC;IACH,YAAC;AAAD,CAAC,AA1ID,CAA2B,2CAAa,GA0IvC;AA1IY,sBAAK"}
\ No newline at end of file
import { Box } from 'tfjs-image-recognition-base';
export declare class MtcnnBox extends Box<MtcnnBox> {
constructor(left: number, top: number, right: number, bottom: number);
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var MtcnnBox = /** @class */ (function (_super) {
tslib_1.__extends(MtcnnBox, _super);
function MtcnnBox(left, top, right, bottom) {
return _super.call(this, { left: left, top: top, right: right, bottom: bottom }, true) || this;
}
return MtcnnBox;
}(tfjs_image_recognition_base_1.Box));
exports.MtcnnBox = MtcnnBox;
//# sourceMappingURL=MtcnnBox.js.map
\ No newline at end of file
{"version":3,"file":"MtcnnBox.js","sourceRoot":"","sources":["../../src/mtcnn/MtcnnBox.ts"],"names":[],"mappings":";;;AAAA,2EAAkD;AAElD;IAA8B,oCAAa;IACzC,kBAAY,IAAY,EAAE,GAAW,EAAE,KAAa,EAAE,MAAc;eAClE,kBAAM,EAAE,IAAI,MAAA,EAAE,GAAG,KAAA,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,EAAE,IAAI,CAAC;IAC3C,CAAC;IACH,eAAC;AAAD,CAAC,AAJD,CAA8B,iCAAG,GAIhC;AAJY,4BAAQ"}
\ No newline at end of file
import * as tf from '@tensorflow/tfjs-core';
import { BoundingBox, Dimensions } from 'tfjs-image-recognition-base';
export declare function extractImagePatches(img: HTMLCanvasElement, boxes: BoundingBox[], {width, height}: Dimensions): Promise<tf.Tensor4D[]>;
import { Box, Dimensions } from 'tfjs-image-recognition-base';
export declare function extractImagePatches(img: HTMLCanvasElement, boxes: Box[], {width, height}: Dimensions): Promise<tf.Tensor4D[]>;
......@@ -2,8 +2,8 @@
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var tf = require("@tensorflow/tfjs-core");
var normalize_1 = require("./normalize");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var normalize_1 = require("./normalize");
function extractImagePatches(img, boxes, _a) {
var width = _a.width, height = _a.height;
return tslib_1.__awaiter(this, void 0, void 0, function () {
......
{"version":3,"file":"extractImagePatches.js","sourceRoot":"","sources":["../../src/mtcnn/extractImagePatches.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAE5C,yCAAwC;AACxC,2EAAyG;AAEzG,6BACE,GAAsB,EACtB,KAAoB,EACpB,EAA6B;QAA3B,gBAAK,EAAE,kBAAM;;;;;;;oBAIT,MAAM,GAAG,iDAAmB,CAAC,GAAG,CAAC,CAAA;oBAEvB,qBAAM,OAAO,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,UAAM,GAAG;;;gCAE7C,KAAmB,GAAG,CAAC,YAAY,CAAC,GAAG,CAAC,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,EAAxD,CAAC,OAAA,EAAE,EAAE,QAAA,EAAE,CAAC,OAAA,EAAE,EAAE,QAAA,CAA4C;gCAE1D,KAAK,GAAG,CAAC,GAAG,CAAC,CAAA;gCACb,KAAK,GAAG,CAAC,GAAG,CAAC,CAAA;gCACb,OAAO,GAAG,MAAM,CAAC,YAAY,CAAC,KAAK,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG,KAAK,CAAC,EAAE,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAA;gCAE7E,sBAAO,iBAAiB,CAAC,OAAO,CAAC,EAAA;;6BAClC,CAAC,CAAC,EAAA;;oBATG,OAAO,GAAG,SASb;oBAEG,iBAAiB,GAAe,EAAE,CAAA;oBAExC,OAAO,CAAC,OAAO,CAAC,UAAA,GAAG;wBACjB,IAAM,KAAK,GAAG,0CAAY,CAAC,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAAC,CAAA;wBAC7C,IAAM,QAAQ,GAAG,iDAAmB,CAAC,KAAK,CAAC,CAAA;wBAC3C,QAAQ,CAAC,SAAS,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,CAAC,CAAA;wBACpC,IAAA,sDAAI,CAA+C;wBAE3D,IAAM,QAAQ,GAAG,EAAE,CAAA;wBACnB,cAAc;wBACd,KAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC,IAAE,CAAC,EAAE;4BACpC,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;4BAC1B,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;4BAC1B,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAA;yBACvB;wBACD,iBAAiB,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAA;oBAClC,CAAC,CAAC,CAAA;oBAGF,sBAAO,iBAAiB,CAAC,GAAG,CAAC,UAAA,IAAI;4BAC/B,IAAM,CAAC,GAAG,EAAE,CAAC,IAAI,CAAC;gCAChB,IAAM,gBAAgB,GAAG,EAAE,CAAC,SAAS,CACnC,EAAE,CAAC,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,EAAE,KAAK,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC,EACxC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CACb,CAAC,OAAO,EAAiB,CAAA;gCAE1B,OAAO,qBAAS,CAAC,gBAAgB,CAAC,CAAA;4BACpC,CAAC,CAAC,CAAA;4BACF,OAAO,CAAC,CAAA;wBACV,CAAC,CAAC,EAAA;;;;CACH;AAlDD,kDAkDC"}
\ No newline at end of file
{"version":3,"file":"extractImagePatches.js","sourceRoot":"","sources":["../../src/mtcnn/extractImagePatches.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAiG;AAEjG,yCAAwC;AAExC,6BACE,GAAsB,EACtB,KAAY,EACZ,EAA6B;QAA3B,gBAAK,EAAE,kBAAM;;;;;;;oBAIT,MAAM,GAAG,iDAAmB,CAAC,GAAG,CAAC,CAAA;oBAEvB,qBAAM,OAAO,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,UAAM,GAAG;;;gCAE7C,KAAmB,GAAG,CAAC,YAAY,CAAC,GAAG,CAAC,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,EAAxD,CAAC,OAAA,EAAE,EAAE,QAAA,EAAE,CAAC,OAAA,EAAE,EAAE,QAAA,CAA4C;gCAE1D,KAAK,GAAG,CAAC,GAAG,CAAC,CAAA;gCACb,KAAK,GAAG,CAAC,GAAG,CAAC,CAAA;gCACb,OAAO,GAAG,MAAM,CAAC,YAAY,CAAC,KAAK,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG,KAAK,CAAC,EAAE,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC,CAAA;gCAE7E,sBAAO,iBAAiB,CAAC,OAAO,CAAC,EAAA;;6BAClC,CAAC,CAAC,EAAA;;oBATG,OAAO,GAAG,SASb;oBAEG,iBAAiB,GAAe,EAAE,CAAA;oBAExC,OAAO,CAAC,OAAO,CAAC,UAAA,GAAG;wBACjB,IAAM,KAAK,GAAG,0CAAY,CAAC,EAAE,KAAK,OAAA,EAAE,MAAM,QAAA,EAAE,CAAC,CAAA;wBAC7C,IAAM,QAAQ,GAAG,iDAAmB,CAAC,KAAK,CAAC,CAAA;wBAC3C,QAAQ,CAAC,SAAS,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,CAAC,CAAA;wBACpC,IAAA,sDAAI,CAA+C;wBAE3D,IAAM,QAAQ,GAAG,EAAE,CAAA;wBACnB,cAAc;wBACd,KAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC,IAAE,CAAC,EAAE;4BACpC,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;4BAC1B,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAA;4BAC1B,QAAQ,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAA;yBACvB;wBACD,iBAAiB,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAA;oBAClC,CAAC,CAAC,CAAA;oBAGF,sBAAO,iBAAiB,CAAC,GAAG,CAAC,UAAA,IAAI;4BAC/B,IAAM,CAAC,GAAG,EAAE,CAAC,IAAI,CAAC;gCAChB,IAAM,gBAAgB,GAAG,EAAE,CAAC,SAAS,CACnC,EAAE,CAAC,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,EAAE,KAAK,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC,EACxC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CACb,CAAC,OAAO,EAAiB,CAAA;gCAE1B,OAAO,qBAAS,CAAC,gBAAgB,CAAC,CAAA;4BACpC,CAAC,CAAC,CAAA;4BACF,OAAO,CAAC,CAAA;wBACV,CAAC,CAAC,EAAA;;;;CACH;AAlDD,kDAkDC"}
\ No newline at end of file
......@@ -4,6 +4,7 @@ var tf = require("@tensorflow/tfjs-core");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var config_1 = require("./config");
var getSizesForScale_1 = require("./getSizesForScale");
var MtcnnBox_1 = require("./MtcnnBox");
var normalize_1 = require("./normalize");
var PNet_1 = require("./PNet");
function rescaleAndNormalize(x, scale) {
......@@ -27,7 +28,7 @@ function extractBoundingBoxes(scoresTensor, regionsTensor, scale, scoreThreshold
var boundingBoxes = indices.map(function (idx) {
var cell = new tfjs_image_recognition_base_1.BoundingBox(Math.round((idx.y * config_1.CELL_STRIDE + 1) / scale), Math.round((idx.x * config_1.CELL_STRIDE + 1) / scale), Math.round((idx.y * config_1.CELL_STRIDE + config_1.CELL_SIZE) / scale), Math.round((idx.x * config_1.CELL_STRIDE + config_1.CELL_SIZE) / scale));
var score = scoresTensor.get(idx.y, idx.x);
var region = new tfjs_image_recognition_base_1.BoundingBox(regionsTensor.get(idx.y, idx.x, 0), regionsTensor.get(idx.y, idx.x, 1), regionsTensor.get(idx.y, idx.x, 2), regionsTensor.get(idx.y, idx.x, 3));
var region = new MtcnnBox_1.MtcnnBox(regionsTensor.get(idx.y, idx.x, 0), regionsTensor.get(idx.y, idx.x, 1), regionsTensor.get(idx.y, idx.x, 2), regionsTensor.get(idx.y, idx.x, 3));
return {
cell: cell,
score: score,
......
{"version":3,"file":"stage1.js","sourceRoot":"","sources":["../../src/mtcnn/stage1.ts"],"names":[],"mappings":";;AAAA,0CAA4C;AAC5C,2EAAoF;AAEpF,mCAAkD;AAClD,uDAAsD;AACtD,yCAAwC;AACxC,+BAA8B;AAG9B,6BAA6B,CAAc,EAAE,KAAa;IACxD,OAAO,EAAE,CAAC,IAAI,CAAC;QAEP,IAAA,iEAA6D,EAA3D,kBAAM,EAAE,gBAAK,CAA8C;QACnE,IAAM,OAAO,GAAG,EAAE,CAAC,KAAK,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAA;QAC3D,IAAM,UAAU,GAAG,qBAAS,CAAC,OAAO,CAAC,CAAA;QAErC,OAAQ,EAAE,CAAC,SAAS,CAAC,UAAU,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAiB,CAAA;IAChE,CAAC,CAAC,CAAA;AACJ,CAAC;AAED,8BACE,YAAyB,EACzB,aAA0B,EAC1B,KAAa,EACb,cAAsB;IAGtB,sDAAsD;IACtD,IAAM,OAAO,GAAY,EAAE,CAAA;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,YAAY,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,YAAY,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE;YAC9C,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,cAAc,EAAE;gBAC5C,OAAO,CAAC,IAAI,CAAC,IAAI,mCAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAA;aAC9B;SACF;KACF;IAED,IAAM,aAAa,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG;QACnC,IAAM,IAAI,GAAG,IAAI,yCAAW,CAC1B,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,EAC7C,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,EAC7C,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,kBAAS,CAAC,GAAG,KAAK,CAAC,EACrD,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,kBAAS,CAAC,GAAG,KAAK,CAAC,CACtD,CAAA;QAED,IAAM,KAAK,GAAG,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,CAAA;QAE5C,IAAM,MAAM,GAAG,IAAI,yCAAW,CAC5B,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CACnC,CAAA;QAED,OAAO;YACL,IAAI,MAAA;YACJ,KAAK,OAAA;YACL,MAAM,QAAA;SACP,CAAA;IACH,CAAC,CAAC,CAAA;IAEF,OAAO,aAAa,CAAA;AACtB,CAAC;AAED,gBACE,SAAsB,EACtB,MAAgB,EAChB,cAAsB,EACtB,MAAkB,EAClB,KAAU;IAEV,KAAK,CAAC,MAAM,GAAG,EAAE,CAAA;IAEjB,IAAM,WAAW,GAAG,MAAM,CAAC,GAAG,CAAC,UAAC,KAAK,IAAK,OAAA,EAAE,CAAC,IAAI,CAAC;QAChD,IAAM,aAAa,GAAQ,EAAE,KAAK,OAAA,EAAE,CAAA;QACpC,IAAM,OAAO,GAAG,mBAAmB,CAAC,SAAS,EAAE,KAAK,CAAC,CAAA;QAErD,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACb,IAAA,iCAAyC,EAAvC,cAAI,EAAE,oBAAO,CAA0B;QAC/C,aAAa,CAAC,IAAI,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QAEpC,IAAM,YAAY,GAAG,EAAE,CAAC,OAAO,CAAC,EAAE,CAAC,OAAO,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAgB,CAAA;QACzE,IAAM,aAAa,GAAG,EAAE,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC,CAAgB,CAAA;QAE3D,OAAO;YACL,YAAY,cAAA;YACZ,aAAa,eAAA;YACb,KAAK,OAAA;YACL,aAAa,eAAA;SACd,CAAA;IACH,CAAC,CAAC,EAjBwC,CAiBxC,CAAC,CAAA;IAEH,IAAM,aAAa,GAAG,WAAW,CAAC,GAAG,CAAC,UAAC,EAAqD;YAAnD,8BAAY,EAAE,gCAAa,EAAE,gBAAK,EAAE,gCAAa;QACxF,IAAM,aAAa,GAAG,oBAAoB,CACxC,YAAY,EACZ,aAAa,EACb,KAAK,EACL,cAAc,CACf,CAAA;QAED,YAAY,CAAC,OAAO,EAAE,CAAA;QACtB,aAAa,CAAC,OAAO,EAAE,CAAA;QAEvB,IAAI,CAAC,aAAa,CAAC,MAAM,EAAE;YACzB,KAAK,CAAC,MAAM,CAAC,IAAI,CAAC,aAAa,CAAC,CAAA;YAChC,OAAO,EAAE,CAAA;SACV;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACnB,IAAM,OAAO,GAAG,+CAAiB,CAC/B,aAAa,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,IAAI,EAAT,CAAS,CAAC,EACpC,aAAa,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,KAAK,EAAV,CAAU,CAAC,EACrC,GAAG,CACJ,CAAA;QACD,aAAa,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QACnC,aAAa,CAAC,QAAQ,GAAG,OAAO,CAAC,MAAM,CAAA;QAEvC,KAAK,CAAC,MAAM,CAAC,IAAI,CAAC,aAAa,CAAC,CAAA;QAChC,OAAO,OAAO,CAAC,GAAG,CAAC,UAAA,MAAM,IAAI,OAAA,aAAa,CAAC,MAAM,CAAC,EAArB,CAAqB,CAAC,CAAA;IACrD,CAAC,CAAC,CAAA;IAEF,IAAM,QAAQ,GAAG,aAAa,CAAC,MAAM,CACnC,UAAC,GAAG,EAAE,KAAK,IAAK,OAAA,GAAG,CAAC,MAAM,CAAC,KAAK,CAAC,EAAjB,CAAiB,EAAE,EAAE,CACtC,CAAA;IAED,IAAI,UAAU,GAAkB,EAAE,CAAA;IAClC,IAAI,WAAW,GAAa,EAAE,CAAA;IAE9B,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE;QACvB,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACnB,IAAM,OAAO,GAAG,+CAAiB,CAC/B,QAAQ,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,IAAI,EAAT,CAAS,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,KAAK,EAAV,CAAU,CAAC,EAChC,GAAG,CACJ,CAAA;QACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QAElC,WAAW,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,QAAQ,CAAC,GAAG,CAAC,CAAC,KAAK,EAAnB,CAAmB,CAAC,CAAA;QACrD,UAAU,GAAG,OAAO;aACjB,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,QAAQ,CAAC,GAAG,CAAC,EAAb,CAAa,CAAC;aACzB,GAAG,CAAC,UAAC,EAAgB;gBAAd,cAAI,EAAE,kBAAM;YAClB,OAAA,IAAI,yCAAW,CACb,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,CAAC,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,EACtC,IAAI,CAAC,GAAG,GAAG,CAAC,MAAM,CAAC,GAAG,GAAG,IAAI,CAAC,MAAM,CAAC,EACrC,IAAI,CAAC,KAAK,GAAG,CAAC,MAAM,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,EACxC,IAAI,CAAC,MAAM,GAAG,CAAC,MAAM,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAC5C,CAAC,QAAQ,EAAE,CAAC,KAAK,EAAE;QALpB,CAKoB,CACrB,CAAA;KAEJ;IAED,OAAO;QACL,KAAK,EAAE,UAAU;QACjB,MAAM,EAAE,WAAW;KACpB,CAAA;AAEH,CAAC;AA5FD,wBA4FC"}
\ No newline at end of file
{"version":3,"file":"stage1.js","sourceRoot":"","sources":["../../src/mtcnn/stage1.ts"],"names":[],"mappings":";;AAAA,0CAA4C;AAC5C,2EAAoF;AAEpF,mCAAkD;AAClD,uDAAsD;AACtD,uCAAsC;AACtC,yCAAwC;AACxC,+BAA8B;AAG9B,6BAA6B,CAAc,EAAE,KAAa;IACxD,OAAO,EAAE,CAAC,IAAI,CAAC;QAEP,IAAA,iEAA6D,EAA3D,kBAAM,EAAE,gBAAK,CAA8C;QACnE,IAAM,OAAO,GAAG,EAAE,CAAC,KAAK,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,CAAA;QAC3D,IAAM,UAAU,GAAG,qBAAS,CAAC,OAAO,CAAC,CAAA;QAErC,OAAQ,EAAE,CAAC,SAAS,CAAC,UAAU,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAiB,CAAA;IAChE,CAAC,CAAC,CAAA;AACJ,CAAC;AAED,8BACE,YAAyB,EACzB,aAA0B,EAC1B,KAAa,EACb,cAAsB;IAGtB,sDAAsD;IACtD,IAAM,OAAO,GAAY,EAAE,CAAA;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,YAAY,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,YAAY,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE;YAC9C,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,cAAc,EAAE;gBAC5C,OAAO,CAAC,IAAI,CAAC,IAAI,mCAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAA;aAC9B;SACF;KACF;IAED,IAAM,aAAa,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG;QACnC,IAAM,IAAI,GAAG,IAAI,yCAAW,CAC1B,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,EAC7C,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,EAC7C,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,kBAAS,CAAC,GAAG,KAAK,CAAC,EACrD,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,oBAAW,GAAG,kBAAS,CAAC,GAAG,KAAK,CAAC,CACtD,CAAA;QAED,IAAM,KAAK,GAAG,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,CAAA;QAE5C,IAAM,MAAM,GAAG,IAAI,mBAAQ,CACzB,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAClC,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CACnC,CAAA;QAED,OAAO;YACL,IAAI,MAAA;YACJ,KAAK,OAAA;YACL,MAAM,QAAA;SACP,CAAA;IACH,CAAC,CAAC,CAAA;IAEF,OAAO,aAAa,CAAA;AACtB,CAAC;AAED,gBACE,SAAsB,EACtB,MAAgB,EAChB,cAAsB,EACtB,MAAkB,EAClB,KAAU;IAEV,KAAK,CAAC,MAAM,GAAG,EAAE,CAAA;IAEjB,IAAM,WAAW,GAAG,MAAM,CAAC,GAAG,CAAC,UAAC,KAAK,IAAK,OAAA,EAAE,CAAC,IAAI,CAAC;QAChD,IAAM,aAAa,GAAQ,EAAE,KAAK,OAAA,EAAE,CAAA;QACpC,IAAM,OAAO,GAAG,mBAAmB,CAAC,SAAS,EAAE,KAAK,CAAC,CAAA;QAErD,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACb,IAAA,iCAAyC,EAAvC,cAAI,EAAE,oBAAO,CAA0B;QAC/C,aAAa,CAAC,IAAI,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QAEpC,IAAM,YAAY,GAAG,EAAE,CAAC,OAAO,CAAC,EAAE,CAAC,OAAO,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAgB,CAAA;QACzE,IAAM,aAAa,GAAG,EAAE,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC,CAAgB,CAAA;QAE3D,OAAO;YACL,YAAY,cAAA;YACZ,aAAa,eAAA;YACb,KAAK,OAAA;YACL,aAAa,eAAA;SACd,CAAA;IACH,CAAC,CAAC,EAjBwC,CAiBxC,CAAC,CAAA;IAEH,IAAM,aAAa,GAAG,WAAW,CAAC,GAAG,CAAC,UAAC,EAAqD;YAAnD,8BAAY,EAAE,gCAAa,EAAE,gBAAK,EAAE,gCAAa;QACxF,IAAM,aAAa,GAAG,oBAAoB,CACxC,YAAY,EACZ,aAAa,EACb,KAAK,EACL,cAAc,CACf,CAAA;QAED,YAAY,CAAC,OAAO,EAAE,CAAA;QACtB,aAAa,CAAC,OAAO,EAAE,CAAA;QAEvB,IAAI,CAAC,aAAa,CAAC,MAAM,EAAE;YACzB,KAAK,CAAC,MAAM,CAAC,IAAI,CAAC,aAAa,CAAC,CAAA;YAChC,OAAO,EAAE,CAAA;SACV;QAED,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACnB,IAAM,OAAO,GAAG,+CAAiB,CAC/B,aAAa,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,IAAI,EAAT,CAAS,CAAC,EACpC,aAAa,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,KAAK,EAAV,CAAU,CAAC,EACrC,GAAG,CACJ,CAAA;QACD,aAAa,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QACnC,aAAa,CAAC,QAAQ,GAAG,OAAO,CAAC,MAAM,CAAA;QAEvC,KAAK,CAAC,MAAM,CAAC,IAAI,CAAC,aAAa,CAAC,CAAA;QAChC,OAAO,OAAO,CAAC,GAAG,CAAC,UAAA,MAAM,IAAI,OAAA,aAAa,CAAC,MAAM,CAAC,EAArB,CAAqB,CAAC,CAAA;IACrD,CAAC,CAAC,CAAA;IAEF,IAAM,QAAQ,GAAG,aAAa,CAAC,MAAM,CACnC,UAAC,GAAG,EAAE,KAAK,IAAK,OAAA,GAAG,CAAC,MAAM,CAAC,KAAK,CAAC,EAAjB,CAAiB,EAAE,EAAE,CACtC,CAAA;IAED,IAAI,UAAU,GAAkB,EAAE,CAAA;IAClC,IAAI,WAAW,GAAa,EAAE,CAAA;IAE9B,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE;QACvB,IAAI,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;QACnB,IAAM,OAAO,GAAG,+CAAiB,CAC/B,QAAQ,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,IAAI,EAAT,CAAS,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,UAAA,IAAI,IAAI,OAAA,IAAI,CAAC,KAAK,EAAV,CAAU,CAAC,EAChC,GAAG,CACJ,CAAA;QACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;QAElC,WAAW,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,QAAQ,CAAC,GAAG,CAAC,CAAC,KAAK,EAAnB,CAAmB,CAAC,CAAA;QACrD,UAAU,GAAG,OAAO;aACjB,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,QAAQ,CAAC,GAAG,CAAC,EAAb,CAAa,CAAC;aACzB,GAAG,CAAC,UAAC,EAAgB;gBAAd,cAAI,EAAE,kBAAM;YAClB,OAAA,IAAI,yCAAW,CACb,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,CAAC,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,EACtC,IAAI,CAAC,GAAG,GAAG,CAAC,MAAM,CAAC,GAAG,GAAG,IAAI,CAAC,MAAM,CAAC,EACrC,IAAI,CAAC,KAAK,GAAG,CAAC,MAAM,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,EACxC,IAAI,CAAC,MAAM,GAAG,CAAC,MAAM,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAC5C,CAAC,QAAQ,EAAE,CAAC,KAAK,EAAE;QALpB,CAKoB,CACrB,CAAA;KAEJ;IAED,OAAO;QACL,KAAK,EAAE,UAAU;QACjB,MAAM,EAAE,WAAW;KACpB,CAAA;AAEH,CAAC;AA5FD,wBA4FC"}
\ No newline at end of file
import { BoundingBox } from 'tfjs-image-recognition-base';
import { Box } from 'tfjs-image-recognition-base';
import { RNetParams } from './types';
export declare function stage2(img: HTMLCanvasElement, inputBoxes: BoundingBox[], scoreThreshold: number, params: RNetParams, stats: any): Promise<{
boxes: BoundingBox[];
export declare function stage2(img: HTMLCanvasElement, inputBoxes: Box[], scoreThreshold: number, params: RNetParams, stats: any): Promise<{
boxes: Box<any>[];
scores: number[];
}>;
......@@ -4,6 +4,7 @@ var tslib_1 = require("tslib");
var tf = require("@tensorflow/tfjs-core");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var extractImagePatches_1 = require("./extractImagePatches");
var MtcnnBox_1 = require("./MtcnnBox");
var RNet_1 = require("./RNet");
function stage2(img, inputBoxes, scoreThreshold, params, stats) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
......@@ -47,7 +48,7 @@ function stage2(img, inputBoxes, scoreThreshold, params, stats) {
indicesNms = tfjs_image_recognition_base_1.nonMaxSuppression(filteredBoxes, filteredScores, 0.7);
stats.stage2_nms = Date.now() - ts;
regions_1 = indicesNms.map(function (idx) {
return new tfjs_image_recognition_base_1.BoundingBox(rnetOuts[indices[idx]].regions.get(0, 0), rnetOuts[indices[idx]].regions.get(0, 1), rnetOuts[indices[idx]].regions.get(0, 2), rnetOuts[indices[idx]].regions.get(0, 3));
return new MtcnnBox_1.MtcnnBox(rnetOuts[indices[idx]].regions.get(0, 0), rnetOuts[indices[idx]].regions.get(0, 1), rnetOuts[indices[idx]].regions.get(0, 2), rnetOuts[indices[idx]].regions.get(0, 3));
});
finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; });
finalBoxes = indicesNms.map(function (idx, i) { return filteredBoxes[idx].calibrate(regions_1[i]); });
......
{"version":3,"file":"stage2.js","sourceRoot":"","sources":["../../src/mtcnn/stage2.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAA6E;AAE7E,6DAA4D;AAC5D,+BAA8B;AAG9B,gBACE,GAAsB,EACtB,UAAyB,EACzB,cAAsB,EACtB,MAAkB,EAClB,KAAU;;;;;;oBAGN,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACA,qBAAM,yCAAmB,CAAC,GAAG,EAAE,UAAU,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAA;;oBAAlF,UAAU,GAAG,SAAqE;oBACxF,KAAK,CAAC,0BAA0B,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAElD,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACT,QAAQ,GAAG,UAAU,CAAC,GAAG,CAC7B,UAAA,SAAS;wBACP,IAAM,GAAG,GAAG,WAAI,CAAC,SAAS,EAAE,MAAM,CAAC,CAAA;wBACnC,SAAS,CAAC,OAAO,EAAE,CAAA;wBACnB,OAAO,GAAG,CAAA;oBACZ,CAAC,CACF,CAAA;oBACD,KAAK,CAAC,WAAW,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAE7B,YAAY,GAAG,QAAQ,CAAC,MAAM,GAAG,CAAC;wBACtC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,MAAM,EAAV,CAAU,CAAC,CAAC;wBAC5C,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,CAAA;oBACP,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;oBAAC,qBAAM,YAAY,CAAC,IAAI,EAAE,EAAA;;oBAA7C,MAAM,GAAG,cAAW,SAAyB,EAAC;oBACpD,YAAY,CAAC,OAAO,EAAE,CAAA;oBAEhB,OAAO,GAAG,MAAM;yBACnB,GAAG,CAAC,UAAC,KAAK,EAAE,GAAG,IAAK,OAAA,CAAC,EAAE,KAAK,OAAA,EAAE,GAAG,KAAA,EAAE,CAAC,EAAhB,CAAgB,CAAC;yBACrC,MAAM,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,KAAK,GAAG,cAAc,EAAxB,CAAwB,CAAC;yBACrC,GAAG,CAAC,UAAC,EAAO;4BAAL,YAAG;wBAAO,OAAA,GAAG;oBAAH,CAAG,CAAC,CAAA;oBAElB,aAAa,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,UAAU,CAAC,GAAG,CAAC,EAAf,CAAe,CAAC,CAAA;oBACnD,cAAc,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,MAAM,CAAC,GAAG,CAAC,EAAX,CAAW,CAAC,CAAA;oBAElD,UAAU,GAAkB,EAAE,CAAA;oBAC9B,WAAW,GAAa,EAAE,CAAA;oBAE9B,IAAI,aAAa,CAAC,MAAM,GAAG,CAAC,EAAE;wBAC5B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACT,UAAU,GAAG,+CAAiB,CAClC,aAAa,EACb,cAAc,EACd,GAAG,CACJ,CAAA;wBACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAE5B,YAAU,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG;4BAChC,OAAA,IAAI,yCAAW,CACb,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CACzC;wBALD,CAKC,CACF,CAAA;wBAED,WAAW,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,cAAc,CAAC,GAAG,CAAC,EAAnB,CAAmB,CAAC,CAAA;wBACxD,UAAU,GAAG,UAAU,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC,IAAK,OAAA,aAAa,CAAC,GAAG,CAAC,CAAC,SAAS,CAAC,SAAO,CAAC,CAAC,CAAC,CAAC,EAAxC,CAAwC,CAAC,CAAA;qBAClF;oBAED,QAAQ,CAAC,OAAO,CAAC,UAAA,CAAC;wBAChB,CAAC,CAAC,OAAO,CAAC,OAAO,EAAE,CAAA;wBACnB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;oBACpB,CAAC,CAAC,CAAA;oBAEF,sBAAO;4BACL,KAAK,EAAE,UAAU;4BACjB,MAAM,EAAE,WAAW;yBACpB,EAAA;;;;CACF;AAtED,wBAsEC"}
\ No newline at end of file
{"version":3,"file":"stage2.js","sourceRoot":"","sources":["../../src/mtcnn/stage2.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAqE;AAErE,6DAA4D;AAC5D,uCAAsC;AACtC,+BAA8B;AAG9B,gBACE,GAAsB,EACtB,UAAiB,EACjB,cAAsB,EACtB,MAAkB,EAClB,KAAU;;;;;;oBAGN,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACA,qBAAM,yCAAmB,CAAC,GAAG,EAAE,UAAU,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAA;;oBAAlF,UAAU,GAAG,SAAqE;oBACxF,KAAK,CAAC,0BAA0B,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAElD,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACT,QAAQ,GAAG,UAAU,CAAC,GAAG,CAC7B,UAAA,SAAS;wBACP,IAAM,GAAG,GAAG,WAAI,CAAC,SAAS,EAAE,MAAM,CAAC,CAAA;wBACnC,SAAS,CAAC,OAAO,EAAE,CAAA;wBACnB,OAAO,GAAG,CAAA;oBACZ,CAAC,CACF,CAAA;oBACD,KAAK,CAAC,WAAW,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAE7B,YAAY,GAAG,QAAQ,CAAC,MAAM,GAAG,CAAC;wBACtC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,MAAM,EAAV,CAAU,CAAC,CAAC;wBAC5C,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,CAAA;oBACP,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;oBAAC,qBAAM,YAAY,CAAC,IAAI,EAAE,EAAA;;oBAA7C,MAAM,GAAG,cAAW,SAAyB,EAAC;oBACpD,YAAY,CAAC,OAAO,EAAE,CAAA;oBAEhB,OAAO,GAAG,MAAM;yBACnB,GAAG,CAAC,UAAC,KAAK,EAAE,GAAG,IAAK,OAAA,CAAC,EAAE,KAAK,OAAA,EAAE,GAAG,KAAA,EAAE,CAAC,EAAhB,CAAgB,CAAC;yBACrC,MAAM,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,KAAK,GAAG,cAAc,EAAxB,CAAwB,CAAC;yBACrC,GAAG,CAAC,UAAC,EAAO;4BAAL,YAAG;wBAAO,OAAA,GAAG;oBAAH,CAAG,CAAC,CAAA;oBAElB,aAAa,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,UAAU,CAAC,GAAG,CAAC,EAAf,CAAe,CAAC,CAAA;oBACnD,cAAc,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,MAAM,CAAC,GAAG,CAAC,EAAX,CAAW,CAAC,CAAA;oBAElD,UAAU,GAAU,EAAE,CAAA;oBACtB,WAAW,GAAa,EAAE,CAAA;oBAE9B,IAAI,aAAa,CAAC,MAAM,GAAG,CAAC,EAAE;wBAC5B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACT,UAAU,GAAG,+CAAiB,CAClC,aAAa,EACb,cAAc,EACd,GAAG,CACJ,CAAA;wBACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAE5B,YAAU,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG;4BAChC,OAAA,IAAI,mBAAQ,CACV,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EACxC,QAAQ,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CACzC;wBALD,CAKC,CACF,CAAA;wBAED,WAAW,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,cAAc,CAAC,GAAG,CAAC,EAAnB,CAAmB,CAAC,CAAA;wBACxD,UAAU,GAAG,UAAU,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC,IAAK,OAAA,aAAa,CAAC,GAAG,CAAC,CAAC,SAAS,CAAC,SAAO,CAAC,CAAC,CAAC,CAAC,EAAxC,CAAwC,CAAC,CAAA;qBAClF;oBAED,QAAQ,CAAC,OAAO,CAAC,UAAA,CAAC;wBAChB,CAAC,CAAC,OAAO,CAAC,OAAO,EAAE,CAAA;wBACnB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;oBACpB,CAAC,CAAC,CAAA;oBAEF,sBAAO;4BACL,KAAK,EAAE,UAAU;4BACjB,MAAM,EAAE,WAAW;yBACpB,EAAA;;;;CACF;AAtED,wBAsEC"}
\ No newline at end of file
import { BoundingBox, Point } from 'tfjs-image-recognition-base';
import { BoundingBox, Box, Point } from 'tfjs-image-recognition-base';
import { ONetParams } from './types';
export declare function stage3(img: HTMLCanvasElement, inputBoxes: BoundingBox[], scoreThreshold: number, params: ONetParams, stats: any): Promise<{
boxes: BoundingBox[];
boxes: Box<any>[];
scores: number[];
points: Point[][];
}>;
......@@ -4,6 +4,7 @@ var tslib_1 = require("tslib");
var tf = require("@tensorflow/tfjs-core");
var tfjs_image_recognition_base_1 = require("tfjs-image-recognition-base");
var extractImagePatches_1 = require("./extractImagePatches");
var MtcnnBox_1 = require("./MtcnnBox");
var ONet_1 = require("./ONet");
function stage3(img, inputBoxes, scoreThreshold, params, stats) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
......@@ -38,7 +39,7 @@ function stage3(img, inputBoxes, scoreThreshold, params, stats) {
var idx = _a.idx;
return idx;
});
filteredRegions = indices.map(function (idx) { return new tfjs_image_recognition_base_1.BoundingBox(onetOuts[idx].regions.get(0, 0), onetOuts[idx].regions.get(0, 1), onetOuts[idx].regions.get(0, 2), onetOuts[idx].regions.get(0, 3)); });
filteredRegions = indices.map(function (idx) { return new MtcnnBox_1.MtcnnBox(onetOuts[idx].regions.get(0, 0), onetOuts[idx].regions.get(0, 1), onetOuts[idx].regions.get(0, 2), onetOuts[idx].regions.get(0, 3)); });
filteredBoxes = indices
.map(function (idx, i) { return inputBoxes[idx].calibrate(filteredRegions[i]); });
filteredScores = indices.map(function (idx) { return scores[idx]; });
......
{"version":3,"file":"stage3.js","sourceRoot":"","sources":["../../src/mtcnn/stage3.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAoF;AAEpF,6DAA4D;AAC5D,+BAA8B;AAG9B,gBACE,GAAsB,EACtB,UAAyB,EACzB,cAAsB,EACtB,MAAkB,EAClB,KAAU;;;;;;oBAGN,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACA,qBAAM,yCAAmB,CAAC,GAAG,EAAE,UAAU,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAA;;oBAAlF,UAAU,GAAG,SAAqE;oBACxF,KAAK,CAAC,0BAA0B,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAElD,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACT,QAAQ,GAAG,UAAU,CAAC,GAAG,CAC7B,UAAA,SAAS;wBACP,IAAM,GAAG,GAAG,WAAI,CAAC,SAAS,EAAE,MAAM,CAAC,CAAA;wBACnC,SAAS,CAAC,OAAO,EAAE,CAAA;wBACnB,OAAO,GAAG,CAAA;oBACZ,CAAC,CACF,CAAA;oBACD,KAAK,CAAC,WAAW,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAE7B,YAAY,GAAG,QAAQ,CAAC,MAAM,GAAG,CAAC;wBACtC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,MAAM,EAAV,CAAU,CAAC,CAAC;wBAC5C,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,CAAA;oBACP,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;oBAAC,qBAAM,YAAY,CAAC,IAAI,EAAE,EAAA;;oBAA7C,MAAM,GAAG,cAAW,SAAyB,EAAC;oBACpD,YAAY,CAAC,OAAO,EAAE,CAAA;oBAEhB,OAAO,GAAG,MAAM;yBACnB,GAAG,CAAC,UAAC,KAAK,EAAE,GAAG,IAAK,OAAA,CAAC,EAAE,KAAK,OAAA,EAAE,GAAG,KAAA,EAAE,CAAC,EAAhB,CAAgB,CAAC;yBACrC,MAAM,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,KAAK,GAAG,cAAc,EAAxB,CAAwB,CAAC;yBACrC,GAAG,CAAC,UAAC,EAAO;4BAAL,YAAG;wBAAO,OAAA,GAAG;oBAAH,CAAG,CAAC,CAAA;oBAElB,eAAe,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,IAAI,yCAAW,CACxD,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAChC,EAL0C,CAK1C,CAAC,CAAA;oBACI,aAAa,GAAG,OAAO;yBAC1B,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC,IAAK,OAAA,UAAU,CAAC,GAAG,CAAC,CAAC,SAAS,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,EAA7C,CAA6C,CAAC,CAAA;oBAC3D,cAAc,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,MAAM,CAAC,GAAG,CAAC,EAAX,CAAW,CAAC,CAAA;oBAElD,UAAU,GAAkB,EAAE,CAAA;oBAC9B,WAAW,GAAa,EAAE,CAAA;oBAC1B,MAAM,GAAc,EAAE,CAAA;oBAE1B,IAAI,aAAa,CAAC,MAAM,GAAG,CAAC,EAAE;wBAE5B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACT,UAAU,GAAG,+CAAiB,CAClC,aAAa,EACb,cAAc,EACd,GAAG,EACH,KAAK,CACN,CAAA;wBACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAElC,UAAU,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,aAAa,CAAC,GAAG,CAAC,EAAlB,CAAkB,CAAC,CAAA;wBACtD,WAAW,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,cAAc,CAAC,GAAG,CAAC,EAAnB,CAAmB,CAAC,CAAA;wBACxD,MAAM,GAAG,UAAU,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC;4BAC7B,OAAA,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,UAAC,CAAC,EAAE,KAAK;gCAC5B,OAAA,IAAI,mCAAK,CACP,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,CAAC,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EACvF,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,GAAG,CAAC,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAC5F;4BAHD,CAGC,CACF;wBALD,CAKC,CACF,CAAA;qBACF;oBAED,QAAQ,CAAC,OAAO,CAAC,UAAA,CAAC;wBAChB,CAAC,CAAC,OAAO,CAAC,OAAO,EAAE,CAAA;wBACnB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;wBAClB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;oBACpB,CAAC,CAAC,CAAA;oBAEF,sBAAO;4BACL,KAAK,EAAE,UAAU;4BACjB,MAAM,EAAE,WAAW;4BACnB,MAAM,QAAA;yBACP,EAAA;;;;CAEF;AAlFD,wBAkFC"}
\ No newline at end of file
{"version":3,"file":"stage3.js","sourceRoot":"","sources":["../../src/mtcnn/stage3.ts"],"names":[],"mappings":";;;AAAA,0CAA4C;AAC5C,2EAAyF;AAEzF,6DAA4D;AAC5D,uCAAsC;AACtC,+BAA8B;AAG9B,gBACE,GAAsB,EACtB,UAAyB,EACzB,cAAsB,EACtB,MAAkB,EAClB,KAAU;;;;;;oBAGN,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACA,qBAAM,yCAAmB,CAAC,GAAG,EAAE,UAAU,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAA;;oBAAlF,UAAU,GAAG,SAAqE;oBACxF,KAAK,CAAC,0BAA0B,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAElD,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;oBACT,QAAQ,GAAG,UAAU,CAAC,GAAG,CAC7B,UAAA,SAAS;wBACP,IAAM,GAAG,GAAG,WAAI,CAAC,SAAS,EAAE,MAAM,CAAC,CAAA;wBACnC,SAAS,CAAC,OAAO,EAAE,CAAA;wBACnB,OAAO,GAAG,CAAA;oBACZ,CAAC,CACF,CAAA;oBACD,KAAK,CAAC,WAAW,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;oBAE7B,YAAY,GAAG,QAAQ,CAAC,MAAM,GAAG,CAAC;wBACtC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,GAAG,CAAC,MAAM,EAAV,CAAU,CAAC,CAAC;wBAC5C,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,CAAA;oBACP,KAAA,CAAA,KAAA,KAAK,CAAA,CAAC,IAAI,CAAA;oBAAC,qBAAM,YAAY,CAAC,IAAI,EAAE,EAAA;;oBAA7C,MAAM,GAAG,cAAW,SAAyB,EAAC;oBACpD,YAAY,CAAC,OAAO,EAAE,CAAA;oBAEhB,OAAO,GAAG,MAAM;yBACnB,GAAG,CAAC,UAAC,KAAK,EAAE,GAAG,IAAK,OAAA,CAAC,EAAE,KAAK,OAAA,EAAE,GAAG,KAAA,EAAE,CAAC,EAAhB,CAAgB,CAAC;yBACrC,MAAM,CAAC,UAAA,CAAC,IAAI,OAAA,CAAC,CAAC,KAAK,GAAG,cAAc,EAAxB,CAAwB,CAAC;yBACrC,GAAG,CAAC,UAAC,EAAO;4BAAL,YAAG;wBAAO,OAAA,GAAG;oBAAH,CAAG,CAAC,CAAA;oBAElB,eAAe,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,IAAI,mBAAQ,CACrD,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAC/B,QAAQ,CAAC,GAAG,CAAC,CAAC,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAChC,EAL0C,CAK1C,CAAC,CAAA;oBACI,aAAa,GAAG,OAAO;yBAC1B,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC,IAAK,OAAA,UAAU,CAAC,GAAG,CAAC,CAAC,SAAS,CAAC,eAAe,CAAC,CAAC,CAAC,CAAC,EAA7C,CAA6C,CAAC,CAAA;oBAC3D,cAAc,GAAG,OAAO,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,MAAM,CAAC,GAAG,CAAC,EAAX,CAAW,CAAC,CAAA;oBAElD,UAAU,GAAU,EAAE,CAAA;oBACtB,WAAW,GAAa,EAAE,CAAA;oBAC1B,MAAM,GAAc,EAAE,CAAA;oBAE1B,IAAI,aAAa,CAAC,MAAM,GAAG,CAAC,EAAE;wBAE5B,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,CAAA;wBACT,UAAU,GAAG,+CAAiB,CAClC,aAAa,EACb,cAAc,EACd,GAAG,EACH,KAAK,CACN,CAAA;wBACD,KAAK,CAAC,UAAU,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,CAAA;wBAElC,UAAU,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,aAAa,CAAC,GAAG,CAAC,EAAlB,CAAkB,CAAC,CAAA;wBACtD,WAAW,GAAG,UAAU,CAAC,GAAG,CAAC,UAAA,GAAG,IAAI,OAAA,cAAc,CAAC,GAAG,CAAC,EAAnB,CAAmB,CAAC,CAAA;wBACxD,MAAM,GAAG,UAAU,CAAC,GAAG,CAAC,UAAC,GAAG,EAAE,CAAC;4BAC7B,OAAA,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,UAAC,CAAC,EAAE,KAAK;gCAC5B,OAAA,IAAI,mCAAK,CACP,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,CAAC,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EACvF,CAAC,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,GAAG,CAAC,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAC5F;4BAHD,CAGC,CACF;wBALD,CAKC,CACF,CAAA;qBACF;oBAED,QAAQ,CAAC,OAAO,CAAC,UAAA,CAAC;wBAChB,CAAC,CAAC,OAAO,CAAC,OAAO,EAAE,CAAA;wBACnB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;wBAClB,CAAC,CAAC,MAAM,CAAC,OAAO,EAAE,CAAA;oBACpB,CAAC,CAAC,CAAA;oBAEF,sBAAO;4BACL,KAAK,EAAE,UAAU;4BACjB,MAAM,EAAE,WAAW;4BACnB,MAAM,QAAA;yBACP,EAAA;;;;CAEF;AAlFD,wBAkFC"}
\ No newline at end of file
......@@ -307,137 +307,164 @@
return pts.reduce(function (sum$$1, pt) { return sum$$1.add(pt); }, new Point(0, 0))
.div(new Point(pts.length, pts.length));
}
var Rect = /** @class */ (function () {
function Rect(x, y, width, height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;
function range$1(num, start, step$$1) {
return Array(num).fill(0).map(function (_, i) { return start + (i * step$$1); });
}
Object.defineProperty(Rect.prototype, "right", {
function isValidNumber(num) {
return !!num && num !== Infinity && num !== -Infinity && !isNaN(num) || num === 0;
}
function isValidProbablitiy(num) {
return isValidNumber(num) && 0 <= num && num <= 1.0;
}
var Box = /** @class */ (function () {
// TODO: MTCNN boxes sometimes have negative widths or heights, figure out why and remove
// allowNegativeDimensions flag again
function Box(_box, allowNegativeDimensions) {
if (allowNegativeDimensions === void 0) { allowNegativeDimensions = false; }
var box = _box || {};
var isBbox = [box.left, box.top, box.right, box.bottom].every(isValidNumber);
var isRect = [box.x, box.y, box.width, box.height].every(isValidNumber);
if (!isRect && !isBbox) {
throw new Error("Box.constructor - expected box to be IBoundingBox | IRect, instead have " + JSON.stringify(box));
}
var _a = isRect
? [box.x, box.y, box.width, box.height]
: [box.left, box.top, box.right - box.left, box.bottom - box.top], x = _a[0], y = _a[1], width = _a[2], height = _a[3];
Box.assertIsValidBox({ x: x, y: y, width: width, height: height }, 'Box.constructor', allowNegativeDimensions);
this._x = x;
this._y = y;
this._width = width;
this._height = height;
}
Box.isRect = function (rect) {
return !!rect && [rect.x, rect.y, rect.width, rect.height].every(isValidNumber);
};
Box.assertIsValidBox = function (box, callee, allowNegativeDimensions) {
if (allowNegativeDimensions === void 0) { allowNegativeDimensions = false; }
if (!Box.isRect(box)) {
throw new Error(callee + " - invalid box: " + JSON.stringify(box) + ", expected object with properties x, y, width, height");
}
if (!allowNegativeDimensions && (box.width < 0 || box.height < 0)) {
throw new Error(callee + " - width (" + box.width + ") and height (" + box.height + ") must be positive numbers");
}
};
Object.defineProperty(Box.prototype, "x", {
get: function () {
return this.x + this.width;
return this._x;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Rect.prototype, "bottom", {
Object.defineProperty(Box.prototype, "y", {
get: function () {
return this.y + this.height;
return this._y;
},
enumerable: true,
configurable: true
});
Rect.prototype.toSquare = function () {
var _a = this, x = _a.x, y = _a.y, width = _a.width, height = _a.height;
var diff = Math.abs(width - height);
if (width < height) {
x -= (diff / 2);
width += diff;
}
if (height < width) {
y -= (diff / 2);
height += diff;
}
return new Rect(x, y, width, height);
};
Rect.prototype.pad = function (padX, padY) {
var _a = this, x = _a.x, y = _a.y, width = _a.width, height = _a.height;
return new Rect(x - (padX / 2), y - (padY / 2), width + padX, height + padY);
};
Rect.prototype.floor = function () {
return new Rect(Math.floor(this.x), Math.floor(this.y), Math.floor(this.width), Math.floor(this.height));
};
Rect.prototype.toBoundingBox = function () {
return new BoundingBox(this.x, this.y, this.x + this.width, this.y + this.height);
};
Rect.prototype.clipAtImageBorders = function (imgWidth, imgHeight) {
var _a = this, x = _a.x, y = _a.y, right = _a.right, bottom = _a.bottom;
var clippedX = Math.max(x, 0);
var clippedY = Math.max(y, 0);
var newWidth = right - clippedX;
var newHeight = bottom - clippedY;
var clippedWidth = Math.min(newWidth, imgWidth - clippedX);
var clippedHeight = Math.min(newHeight, imgHeight - clippedY);
return (new Rect(clippedX, clippedY, clippedWidth, clippedHeight)).floor();
};
return Rect;
}());
var BoundingBox = /** @class */ (function () {
function BoundingBox(_left, _top, _right, _bottom) {
this._left = _left;
this._top = _top;
this._right = _right;
this._bottom = _bottom;
}
Object.defineProperty(BoundingBox.prototype, "left", {
Object.defineProperty(Box.prototype, "width", {
get: function () {
return this._left;
return this._width;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "top", {
Object.defineProperty(Box.prototype, "height", {
get: function () {
return this._top;
return this._height;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "right", {
Object.defineProperty(Box.prototype, "left", {
get: function () {
return this._right;
return this.x;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "bottom", {
Object.defineProperty(Box.prototype, "top", {
get: function () {
return this._bottom;
return this.y;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "width", {
Object.defineProperty(Box.prototype, "right", {
get: function () {
return this.right - this.left;
return this.x + this.width;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "height", {
Object.defineProperty(Box.prototype, "bottom", {
get: function () {
return this.bottom - this.top;
return this.y + this.height;
},
enumerable: true,
configurable: true
});
Object.defineProperty(BoundingBox.prototype, "area", {
Object.defineProperty(Box.prototype, "area", {
get: function () {
return this.width * this.height;
},
enumerable: true,
configurable: true
});
BoundingBox.prototype.toSquare = function () {
var _a = this, left = _a.left, top = _a.top, right = _a.right, bottom = _a.bottom;
var off = (Math.abs(this.width - this.height) / 2);
if (this.width < this.height) {
left -= off;
right += off;
Box.prototype.round = function () {
var _a = [this.x, this.y, this.width, this.height]
.map(function (val) { return Math.round(val); }), x = _a[0], y = _a[1], width = _a[2], height = _a[3];
return new Box({ x: x, y: y, width: width, height: height });
};
Box.prototype.floor = function () {
var _a = [this.x, this.y, this.width, this.height]
.map(function (val) { return Math.floor(val); }), x = _a[0], y = _a[1], width = _a[2], height = _a[3];
return new Box({ x: x, y: y, width: width, height: height });
};
Box.prototype.toSquare = function () {
var _a = this, x = _a.x, y = _a.y, width = _a.width, height = _a.height;
var diff = Math.abs(width - height);
if (width < height) {
x -= (diff / 2);
width += diff;
}
if (this.height < this.width) {
top -= off;
bottom += off;
if (height < width) {
y -= (diff / 2);
height += diff;
}
return new BoundingBox(left, top, right, bottom);
return new Box({ x: x, y: y, width: width, height: height });
};
BoundingBox.prototype.round = function () {
return new BoundingBox(Math.round(this.left), Math.round(this.top), Math.round(this.right), Math.round(this.bottom));
Box.prototype.rescale = function (s) {
var scaleX = isDimensions(s) ? s.width : s;
var scaleY = isDimensions(s) ? s.height : s;
return new Box({
x: this.x * scaleX,
y: this.y * scaleY,
width: this.width * scaleX,
height: this.height * scaleY
});
};
BoundingBox.prototype.padAtBorders = function (imageHeight, imageWidth) {
Box.prototype.pad = function (padX, padY) {
var _a = [
this.x - (padX / 2),
this.y - (padY / 2),
this.width + padX,
this.height + padY
], x = _a[0], y = _a[1], width = _a[2], height = _a[3];
return new Box({ x: x, y: y, width: width, height: height });
};
Box.prototype.clipAtImageBorders = function (imgWidth, imgHeight) {
var _a = this, x = _a.x, y = _a.y, right = _a.right, bottom = _a.bottom;
var clippedX = Math.max(x, 0);
var clippedY = Math.max(y, 0);
var newWidth = right - clippedX;
var newHeight = bottom - clippedY;
var clippedWidth = Math.min(newWidth, imgWidth - clippedX);
var clippedHeight = Math.min(newHeight, imgHeight - clippedY);
return (new Box({ x: clippedX, y: clippedY, width: clippedWidth, height: clippedHeight })).floor();
};
Box.prototype.padAtBorders = function (imageHeight, imageWidth) {
var w = this.width + 1;
var h = this.height + 1;
var dx = 1;
......@@ -466,19 +493,132 @@
}
return { dy: dy, edy: edy, dx: dx, edx: edx, y: y, ey: ey, x: x, ex: ex, w: w, h: h };
};
BoundingBox.prototype.calibrate = function (region) {
return new BoundingBox(this.left + (region.left * this.width), this.top + (region.top * this.height), this.right + (region.right * this.width), this.bottom + (region.bottom * this.height)).toSquare().round();
Box.prototype.calibrate = function (region) {
return new Box({
left: this.left + (region.left * this.width),
top: this.top + (region.top * this.height),
right: this.right + (region.right * this.width),
bottom: this.bottom + (region.bottom * this.height)
}).toSquare().round();
};
BoundingBox.prototype.rescale = function (s) {
var scaleX = isDimensions(s) ? s.width : s;
var scaleY = isDimensions(s) ? s.height : s;
return new BoundingBox(this.left * scaleX, this.top * scaleY, this.right * scaleX, this.bottom * scaleY);
return Box;
}());
/*! *****************************************************************************
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABLITY OR NON-INFRINGEMENT.
See the Apache Version 2.0 License for specific language governing permissions
and limitations under the License.
***************************************************************************** */
/* global Reflect, Promise */
var extendStatics$1 = function(d, b) {
extendStatics$1 = Object.setPrototypeOf ||
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
return extendStatics$1(d, b);
};
function __extends$1(d, b) {
extendStatics$1(d, b);
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
}
var __assign$1 = function() {
__assign$1 = Object.assign || function __assign(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];
}
return t;
};
BoundingBox.prototype.toRect = function () {
return new Rect(this.left, this.top, this.width, this.height);
return __assign$1.apply(this, arguments);
};
function __awaiter$1(thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
}
function __generator$1(thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (_) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
}
var BoundingBox = /** @class */ (function (_super) {
__extends$1(BoundingBox, _super);
function BoundingBox(left, top, right, bottom) {
return _super.call(this, { left: left, top: top, right: right, bottom: bottom }) || this;
}
return BoundingBox;
}());
}(Box));
var LabeledBox = /** @class */ (function (_super) {
__extends$1(LabeledBox, _super);
function LabeledBox(box, label) {
var _this = _super.call(this, box) || this;
_this._label = label;
return _this;
}
LabeledBox.assertIsValidLabeledBox = function (box, callee) {
Box.assertIsValidBox(box, callee);
if (!isValidNumber(box.label)) {
throw new Error(callee + " - expected property label (" + box.label + ") to be a number");
}
};
Object.defineProperty(LabeledBox.prototype, "label", {
get: function () {
return this._label;
},
enumerable: true,
configurable: true
});
return LabeledBox;
}(Box));
var Rect = /** @class */ (function (_super) {
__extends$1(Rect, _super);
function Rect(x, y, width, height) {
return _super.call(this, { x: x, y: y, width: width, height: height }) || this;
}
return Rect;
}(Box));
var ObjectDetection = /** @class */ (function () {
function ObjectDetection(score, classScore, className, relativeBox, imageDims) {
......@@ -560,6 +700,38 @@
return ObjectDetection;
}());
var PredictedBox = /** @class */ (function (_super) {
__extends$1(PredictedBox, _super);
function PredictedBox(box, label, score, classScore) {
var _this = _super.call(this, box, label) || this;
_this._score = score;
_this._classScore = classScore;
return _this;
}
PredictedBox.assertIsValidPredictedBox = function (box, callee) {
LabeledBox.assertIsValidLabeledBox(box, callee);
if (!isValidProbablitiy(box.score)
|| !isValidProbablitiy(box.classScore)) {
throw new Error(callee + " - expected properties score (" + box.score + ") and (" + box.classScore + ") to be a number between [0, 1]");
}
};
Object.defineProperty(PredictedBox.prototype, "score", {
get: function () {
return this._score;
},
enumerable: true,
configurable: true
});
Object.defineProperty(PredictedBox.prototype, "classScore", {
get: function () {
return this._classScore;
},
enumerable: true,
configurable: true
});
return PredictedBox;
}(LabeledBox));
function disposeUnusedWeightTensors(weightMap, paramMappings) {
Object.keys(weightMap).forEach(function (path) {
if (!paramMappings.some(function (pm) { return pm.originalPath === path; })) {
......@@ -761,83 +933,6 @@
});
}
/*! *****************************************************************************
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABLITY OR NON-INFRINGEMENT.
See the Apache Version 2.0 License for specific language governing permissions
and limitations under the License.
***************************************************************************** */
/* global Reflect, Promise */
var extendStatics$1 = function(d, b) {
extendStatics$1 = Object.setPrototypeOf ||
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
return extendStatics$1(d, b);
};
function __extends$1(d, b) {
extendStatics$1(d, b);
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
}
var __assign$1 = function() {
__assign$1 = Object.assign || function __assign(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];
}
return t;
};
return __assign$1.apply(this, arguments);
};
function __awaiter$1(thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
}
function __generator$1(thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (_) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
}
function imageTensorToCanvas(imgTensor, canvas) {
return __awaiter$1(this, void 0, void 0, function () {
var targetCanvas, _a, height, width, numChannels, imgTensor3D;
......@@ -857,7 +952,8 @@
});
}
function imageToSquare(input, inputSize) {
function imageToSquare(input, inputSize, centerImage) {
if (centerImage === void 0) { centerImage = false; }
if (!(input instanceof HTMLImageElement || input instanceof HTMLCanvasElement)) {
throw new Error('imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement');
}
......@@ -867,7 +963,10 @@
var height = scale * dims.height;
var targetCanvas = createCanvas({ width: inputSize, height: inputSize });
var inputCanvas = input instanceof HTMLCanvasElement ? input : createCanvasFromMedia(input);
getContext2dOrThrow(targetCanvas).drawImage(inputCanvas, 0, 0, width, height);
var offset = Math.abs(width - height) / 2;
var dx = centerImage && width < height ? offset : 0;
var dy = centerImage && height < width ? offset : 0;
getContext2dOrThrow(targetCanvas).drawImage(inputCanvas, dx, dy, width, height);
return targetCanvas;
}
......@@ -898,7 +997,8 @@
* Pads the smaller dimension of an image tensor with zeros, such that width === height.
*
* @param imgTensor The image tensor.
* @param isCenterImage (optional, default: false) If true, add padding on both sides of the image, such that the image.
* @param isCenterImage (optional, default: false) If true, add an equal amount of padding on
* both sides of the minor dimension oof the image.
* @returns The padded tensor with width === height.
*/
function padToSquare(imgTensor, isCenterImage) {
......@@ -932,46 +1032,41 @@
}
var NetInput = /** @class */ (function () {
function NetInput(inputs, isBatchInput, keepCanvases) {
if (isBatchInput === void 0) { isBatchInput = false; }
if (keepCanvases === void 0) { keepCanvases = false; }
function NetInput(inputs, treatAsBatchInput) {
if (treatAsBatchInput === void 0) { treatAsBatchInput = false; }
var _this = this;
this._inputs = [];
this._imageTensors = [];
this._canvases = [];
this._isManaged = false;
this._isBatchInput = false;
this._treatAsBatchInput = false;
this._inputDimensions = [];
this._paddings = [];
if (isTensor4D(inputs)) {
this._inputs = unstack(inputs);
if (!Array.isArray(inputs)) {
throw new Error("NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have " + inputs);
}
if (Array.isArray(inputs)) {
this._inputs = inputs.map(function (input, idx) {
this._treatAsBatchInput = treatAsBatchInput;
this._batchSize = inputs.length;
inputs.forEach(function (input, idx) {
if (isTensor3D(input)) {
// TODO: make sure not to dispose original tensors passed in by the user
return clone(input);
_this._imageTensors[idx] = input;
_this._inputDimensions[idx] = input.shape;
return;
}
if (isTensor4D(input)) {
var shape = input.shape;
var batchSize = shape[0];
var batchSize = input.shape[0];
if (batchSize !== 1) {
throw new Error("NetInput - tf.Tensor4D with batchSize " + batchSize + " passed, but not supported in input array");
}
return input.reshape(shape.slice(1));
_this._imageTensors[idx] = input;
_this._inputDimensions[idx] = input.shape.slice(1);
return;
}
var canvas = input instanceof HTMLCanvasElement ? input : createCanvasFromMedia(input);
if (keepCanvases) {
_this._canvases[idx] = canvas;
}
return fromPixels(canvas);
_this._inputDimensions[idx] = [canvas.height, canvas.width, 3];
});
}
this._isBatchInput = this.batchSize > 1 || isBatchInput;
this._inputDimensions = this._inputs.map(function (t) { return t.shape; });
}
Object.defineProperty(NetInput.prototype, "inputs", {
Object.defineProperty(NetInput.prototype, "imageTensors", {
get: function () {
return this._inputs;
return this._imageTensors;
},
enumerable: true,
configurable: true
......@@ -983,23 +1078,16 @@
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "isManaged", {
get: function () {
return this._isManaged;
},
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "isBatchInput", {
get: function () {
return this._isBatchInput;
return this.batchSize > 1 || this._treatAsBatchInput;
},
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "batchSize", {
get: function () {
return this._inputs.length;
return this._batchSize;
},
enumerable: true,
configurable: true
......@@ -1011,13 +1099,6 @@
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "paddings", {
get: function () {
return this._paddings;
},
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "inputSize", {
get: function () {
return this._inputSize;
......@@ -1025,22 +1106,17 @@
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "relativePaddings", {
get: function () {
var _this = this;
return Array(this.inputs.length).fill(0).map(function (_, batchIdx) { return _this.getRelativePaddings(batchIdx); });
},
enumerable: true,
configurable: true
});
Object.defineProperty(NetInput.prototype, "reshapedInputDimensions", {
get: function () {
var _this = this;
return Array(this.inputs.length).fill(0).map(function (_, batchIdx) { return _this.getReshapedInputDimensions(batchIdx); });
return range$1(this.batchSize, 0, 1).map(function (_, batchIdx) { return _this.getReshapedInputDimensions(batchIdx); });
},
enumerable: true,
configurable: true
});
NetInput.prototype.getInput = function (batchIdx) {
return this.canvases[batchIdx] || this.imageTensors[batchIdx];
};
NetInput.prototype.getInputDimensions = function (batchIdx) {
return this._inputDimensions[batchIdx];
};
......@@ -1050,12 +1126,6 @@
NetInput.prototype.getInputWidth = function (batchIdx) {
return this._inputDimensions[batchIdx][1];
};
NetInput.prototype.getPaddings = function (batchIdx) {
return this._paddings[batchIdx];
};
NetInput.prototype.getRelativePaddings = function (batchIdx) {
return new Point((this.getPaddings(batchIdx).x + this.getInputWidth(batchIdx)) / this.getInputWidth(batchIdx), (this.getPaddings(batchIdx).y + this.getInputHeight(batchIdx)) / this.getInputHeight(batchIdx));
};
NetInput.prototype.getReshapedInputDimensions = function (batchIdx) {
if (typeof this.inputSize !== 'number') {
throw new Error('getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet');
......@@ -1064,40 +1134,39 @@
var height = this.getInputHeight(batchIdx);
return computeReshapedDimensions({ width: width, height: height }, this.inputSize);
};
/**
* Create a batch tensor from all input canvases and tensors
* with size [batchSize, inputSize, inputSize, 3].
*
* @param inputSize Height and width of the tensor.
* @param isCenterImage (optional, default: false) If true, add an equal amount of padding on
* both sides of the minor dimension oof the image.
* @returns The batch tensor.
*/
NetInput.prototype.toBatchTensor = function (inputSize, isCenterInputs) {
var _this = this;
if (isCenterInputs === void 0) { isCenterInputs = true; }
this._inputSize = inputSize;
return tidy(function () {
var inputTensors = _this._inputs.map(function (inputTensor) {
var _a = inputTensor.shape, originalHeight = _a[0], originalWidth = _a[1];
var imgTensor = inputTensor.expandDims().toFloat();
var inputTensors = range$1(_this.batchSize, 0, 1).map(function (batchIdx) {
var input = _this.getInput(batchIdx);
if (input instanceof Tensor) {
var imgTensor = isTensor4D(input) ? input : input.expandDims();
imgTensor = padToSquare(imgTensor, isCenterInputs);
var _b = imgTensor.shape.slice(1), heightAfterPadding = _b[0], widthAfterPadding = _b[1];
if (heightAfterPadding !== inputSize || widthAfterPadding !== inputSize) {
if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) {
imgTensor = image_ops.resizeBilinear(imgTensor, [inputSize, inputSize]);
}
_this._paddings.push(new Point(widthAfterPadding - originalWidth, heightAfterPadding - originalHeight));
return imgTensor;
});
var batchTensor = stack(inputTensors).as4D(_this.batchSize, inputSize, inputSize, 3);
if (_this.isManaged) {
_this.dispose();
return imgTensor.as3D(inputSize, inputSize, 3);
}
if (input instanceof HTMLCanvasElement) {
return fromPixels(imageToSquare(input, inputSize, isCenterInputs));
}
throw new Error("toBatchTensor - at batchIdx " + batchIdx + ", expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have " + input);
});
var batchTensor = stack(inputTensors.map(function (t) { return t.toFloat(); })).as4D(_this.batchSize, inputSize, inputSize, 3);
return batchTensor;
});
};
/**
* By setting the isManaged flag, all newly created tensors will be
* automatically disposed after the batch tensor has been created
*/
NetInput.prototype.managed = function () {
this._isManaged = true;
return this;
};
NetInput.prototype.dispose = function () {
this._inputs.forEach(function (t) { return t.dispose(); });
};
return NetInput;
}());
......@@ -1106,27 +1175,17 @@
* to be finished loading.
*
* @param input The input, which can be a media element or an array of different media elements.
* @param manageCreatedInput If a new NetInput instance is created from the inputs, this flag
* determines, whether to set the NetInput as managed or not.
* @returns A NetInput instance, which can be passed into one of the neural networks.
*/
function toNetInput(inputs, manageCreatedInput, keepCanvases) {
if (manageCreatedInput === void 0) { manageCreatedInput = false; }
if (keepCanvases === void 0) { keepCanvases = false; }
function toNetInput(inputs) {
return __awaiter$1(this, void 0, void 0, function () {
var afterCreate, inputArgArray, getIdxHint, inputArray;
var inputArgArray, getIdxHint, inputArray;
return __generator$1(this, function (_a) {
switch (_a.label) {
case 0:
if (inputs instanceof NetInput) {
return [2 /*return*/, inputs];
}
afterCreate = function (netInput) { return manageCreatedInput
? netInput.managed()
: netInput; };
if (isTensor4D(inputs)) {
return [2 /*return*/, afterCreate(new NetInput(inputs))];
}
inputArgArray = Array.isArray(inputs)
? inputs
: [inputs];
......@@ -1155,7 +1214,7 @@
case 1:
// wait for all media elements being loaded
_a.sent();
return [2 /*return*/, afterCreate(new NetInput(inputArray, Array.isArray(inputs), keepCanvases))];
return [2 /*return*/, new NetInput(inputArray, Array.isArray(inputs))];
}
});
});
......@@ -1584,29 +1643,30 @@
*/
function extractFaces(input, detections) {
return __awaiter$1(this, void 0, void 0, function () {
var canvas, netInput, ctx, boxes;
return __generator$1(this, function (_a) {
switch (_a.label) {
var canvas, netInput, tensorOrCanvas, _a, ctx, boxes;
return __generator$1(this, function (_b) {
switch (_b.label) {
case 0:
canvas = input;
if (!!(input instanceof HTMLCanvasElement)) return [3 /*break*/, 3];
return [4 /*yield*/, toNetInput(input, true)];
if (!!(input instanceof HTMLCanvasElement)) return [3 /*break*/, 5];
return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _a.sent();
netInput = _b.sent();
if (netInput.batchSize > 1) {
if (netInput.isManaged) {
netInput.dispose();
}
throw new Error('extractFaces - batchSize > 1 not supported');
}
return [4 /*yield*/, imageTensorToCanvas(netInput.inputs[0])];
case 2:
canvas = _a.sent();
if (netInput.isManaged) {
netInput.dispose();
}
_a.label = 3;
tensorOrCanvas = netInput.getInput(0);
if (!(tensorOrCanvas instanceof HTMLCanvasElement)) return [3 /*break*/, 2];
_a = tensorOrCanvas;
return [3 /*break*/, 4];
case 2: return [4 /*yield*/, imageTensorToCanvas(tensorOrCanvas)];
case 3:
_a = _b.sent();
_b.label = 4;
case 4:
canvas = _a;
_b.label = 5;
case 5:
ctx = getContext2dOrThrow(canvas);
boxes = detections.map(function (det) { return det instanceof FaceDetection
? det.forSize(canvas.width, canvas.height).getBox().floor()
......@@ -1630,41 +1690,28 @@
* Using this method is faster then extracting a canvas for each face and
* converting them to tensors individually.
*
* @param input The image that face detection has been performed on.
* @param imageTensor The image tensor that face detection has been performed on.
* @param detections The face detection results or face bounding boxes for that image.
* @returns Tensors of the corresponding image region for each detected face.
*/
function extractFaceTensors(input, detections) {
function extractFaceTensors(imageTensor, detections) {
return __awaiter$1(this, void 0, void 0, function () {
var netInput;
return __generator$1(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, toNetInput(input, true)];
case 1:
netInput = _a.sent();
if (netInput.batchSize > 1) {
if (netInput.isManaged) {
netInput.dispose();
}
if (isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {
throw new Error('extractFaceTensors - batchSize > 1 not supported');
}
return [2 /*return*/, tidy(function () {
var imgTensor = netInput.inputs[0].expandDims().toFloat();
var _a = imgTensor.shape.slice(1), imgHeight = _a[0], imgWidth = _a[1], numChannels = _a[2];
var _a = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0), imgHeight = _a[0], imgWidth = _a[1], numChannels = _a[2];
var boxes = detections.map(function (det) { return det instanceof FaceDetection
? det.forSize(imgWidth, imgHeight).getBox()
: det; })
.map(function (box) { return box.clipAtImageBorders(imgWidth, imgHeight); });
var faceTensors = boxes.map(function (_a) {
var x = _a.x, y = _a.y, width = _a.width, height = _a.height;
return slice4d(imgTensor, [0, y, x, 0], [1, height, width, numChannels]);
return slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]);
});
if (netInput.isManaged) {
netInput.dispose();
}
return faceTensors;
})];
}
});
});
}
......@@ -2147,6 +2194,24 @@
SizeType["LG"] = "lg";
})(SizeType || (SizeType = {}));
function extractSeparableConvParamsFactory(extractWeights, paramMappings) {
return function (channelsIn, channelsOut, mappedPrefix) {
var depthwise_filter = tensor4d(extractWeights(3 * 3 * channelsIn), [3, 3, channelsIn, 1]);
var pointwise_filter = tensor4d(extractWeights(channelsIn * channelsOut), [1, 1, channelsIn, channelsOut]);
var bias = tensor1d(extractWeights(channelsOut));
paramMappings.push({ paramPath: mappedPrefix + "/depthwise_filter" }, { paramPath: mappedPrefix + "/pointwise_filter" }, { paramPath: mappedPrefix + "/bias" });
return new SeparableConvParams(depthwise_filter, pointwise_filter, bias);
};
}
function loadSeparableConvParamsFactory(extractWeightEntry) {
return function (prefix) {
var depthwise_filter = extractWeightEntry(prefix + "/depthwise_filter", 4);
var pointwise_filter = extractWeightEntry(prefix + "/pointwise_filter", 4);
var bias = extractWeightEntry(prefix + "/bias", 1);
return new SeparableConvParams(depthwise_filter, pointwise_filter, bias);
};
}
var isNumber = function (arg) { return typeof arg === 'number'; };
function validateConfig(config) {
if (!config) {
......@@ -2183,6 +2248,9 @@
var INPUT_SIZES = { xs: 224, sm: 320, md: 416, lg: 608 };
var CELL_SIZE = 32;
var DEFAULT_FILTER_SIZES = [
3, 16, 32, 64, 128, 256, 512, 1024, 1024
];
function leaky(x) {
return tidy(function () {
......@@ -2222,33 +2290,28 @@
var bn = extractBatchNormParams(channelsOut, mappedPrefix + "/bn");
return { conv: conv, bn: bn };
}
function extractSeparableConvParams(channelsIn, channelsOut, mappedPrefix) {
var depthwise_filter = tensor4d(extractWeights(3 * 3 * channelsIn), [3, 3, channelsIn, 1]);
var pointwise_filter = tensor4d(extractWeights(channelsIn * channelsOut), [1, 1, channelsIn, channelsOut]);
var bias = tensor1d(extractWeights(channelsOut));
paramMappings.push({ paramPath: mappedPrefix + "/depthwise_filter" }, { paramPath: mappedPrefix + "/pointwise_filter" }, { paramPath: mappedPrefix + "/bias" });
return new SeparableConvParams(depthwise_filter, pointwise_filter, bias);
}
var extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);
return {
extractConvParams: extractConvParams,
extractConvWithBatchNormParams: extractConvWithBatchNormParams,
extractSeparableConvParams: extractSeparableConvParams
};
}
function extractParams$1(weights, withSeparableConvs, boxEncodingSize) {
function extractParams$1(weights, withSeparableConvs, boxEncodingSize, filterSizes) {
var _a = extractWeightsFactory(weights), extractWeights = _a.extractWeights, getRemainingWeights = _a.getRemainingWeights;
var paramMappings = [];
var _b = extractorsFactory$2(extractWeights, paramMappings), extractConvParams = _b.extractConvParams, extractConvWithBatchNormParams = _b.extractConvWithBatchNormParams, extractSeparableConvParams = _b.extractSeparableConvParams;
var extractConvFn = withSeparableConvs ? extractSeparableConvParams : extractConvWithBatchNormParams;
var conv0 = extractConvFn(3, 16, 'conv0');
var conv1 = extractConvFn(16, 32, 'conv1');
var conv2 = extractConvFn(32, 64, 'conv2');
var conv3 = extractConvFn(64, 128, 'conv3');
var conv4 = extractConvFn(128, 256, 'conv4');
var conv5 = extractConvFn(256, 512, 'conv5');
var conv6 = extractConvFn(512, 1024, 'conv6');
var conv7 = extractConvFn(1024, 1024, 'conv7');
var conv8 = extractConvParams(1024, 5 * boxEncodingSize, 1, 'conv8');
var s0 = filterSizes[0], s1 = filterSizes[1], s2 = filterSizes[2], s3 = filterSizes[3], s4 = filterSizes[4], s5 = filterSizes[5], s6 = filterSizes[6], s7 = filterSizes[7], s8 = filterSizes[8];
var conv0 = extractConvFn(s0, s1, 'conv0');
var conv1 = extractConvFn(s1, s2, 'conv1');
var conv2 = extractConvFn(s2, s3, 'conv2');
var conv3 = extractConvFn(s3, s4, 'conv3');
var conv4 = extractConvFn(s4, s5, 'conv4');
var conv5 = extractConvFn(s5, s6, 'conv5');
var conv6 = extractConvFn(s6, s7, 'conv6');
var conv7 = extractConvFn(s7, s8, 'conv7');
var conv8 = extractConvParams(s8, 5 * boxEncodingSize, 1, 'conv8');
if (getRemainingWeights().length !== 0) {
throw new Error("weights remaing after extract: " + getRemainingWeights().length);
}
......@@ -2285,12 +2348,7 @@
var bn = extractBatchNormParams(prefix + "/bn");
return { conv: conv, bn: bn };
}
function extractSeparableConvParams(prefix) {
var depthwise_filter = extractWeightEntry(prefix + "/depthwise_filter", 4);
var pointwise_filter = extractWeightEntry(prefix + "/pointwise_filter", 4);
var bias = extractWeightEntry(prefix + "/bias", 1);
return new SeparableConvParams(depthwise_filter, pointwise_filter, bias);
}
var extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);
return {
extractConvParams: extractConvParams,
extractConvWithBatchNormParams: extractConvWithBatchNormParams,
......@@ -2363,7 +2421,7 @@
throw new Error('TinyYolov2 - load model before inference');
}
var out = tidy(function () {
var batchTensor = input.toBatchTensor(inputSize, false);
var batchTensor = input.toBatchTensor(inputSize, false).toFloat();
batchTensor = _this.config.meanRgb
? normalize(batchTensor, _this.config.meanRgb)
: batchTensor;
......@@ -2394,7 +2452,7 @@
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true, true)];
return [4 /*yield*/, toNetInput(input)];
case 1: return [4 /*yield*/, _a.apply(this, [_b.sent(), inputSize])];
case 2: return [2 /*return*/, _b.sent()];
}
......@@ -2416,7 +2474,7 @@
if (typeof inputSize !== 'number') {
throw new Error("TinyYolov2 - unknown inputSize: " + inputSize + ", expected number or one of xs | sm | md | lg");
}
return [4 /*yield*/, toNetInput(input, true)];
return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _b.sent();
return [4 /*yield*/, this.forwardInput(netInput, inputSize)];
......@@ -2433,10 +2491,10 @@
boxes = results.map(function (res) { return res.box; });
scores = results.map(function (res) { return res.score; });
classScores = results.map(function (res) { return res.classScore; });
classNames = results.map(function (res) { return _this.config.classes[res.classLabel]; });
classNames = results.map(function (res) { return _this.config.classes[res.label]; });
indices = nonMaxSuppression$1(boxes.map(function (box) { return box.rescale(inputSize); }), scores, this.config.iouThreshold, true);
detections = indices.map(function (idx) {
return new ObjectDetection(scores[idx], classScores[idx], classNames[idx], boxes[idx].toRect(), inputDimensions);
return new ObjectDetection(scores[idx], classScores[idx], classNames[idx], boxes[idx], inputDimensions);
});
return [2 /*return*/, detections];
}
......@@ -2451,7 +2509,12 @@
return loadQuantizedParams$1(modelUri, this.config.withSeparableConvs, defaultModelName);
};
TinyYolov2.prototype.extractParams = function (weights) {
return extractParams$1(weights, this.config.withSeparableConvs, this.boxEncodingSize);
var filterSizes = this.config.filterSizes || DEFAULT_FILTER_SIZES;
var numFilters = filterSizes ? filterSizes.length : undefined;
if (numFilters !== 9) {
throw new Error("TinyYolov2 - expected 9 convolutional filters, but found " + numFilters + " filterSizes in config");
}
return extractParams$1(weights, this.config.withSeparableConvs, this.boxEncodingSize, filterSizes);
};
TinyYolov2.prototype.extractBoxes = function (outputTensor, inputBlobDimensions, scoreThreshold) {
var _this = this;
......@@ -2485,8 +2548,8 @@
var pos = { row: row, col: col, anchor: anchor };
var _b = this.withClassScores
? this.extractPredictedClass(classScoresTensor, pos)
: { classScore: 1, classLabel: 0 }, classScore = _b.classScore, classLabel = _b.classLabel;
results.push(__assign$1({ box: new BoundingBox(x, y, x + width_1, y + height_1), score: score, classScore: score * classScore, classLabel: classLabel }, pos));
: { classScore: 1, label: 0 }, classScore = _b.classScore, label = _b.label;
results.push(__assign$1({ box: new BoundingBox(x, y, x + width_1, y + height_1), score: score, classScore: score * classScore, label: label }, pos));
}
}
}
......@@ -2500,9 +2563,9 @@
var row = pos.row, col = pos.col, anchor = pos.anchor;
return Array(this.config.classes.length).fill(0)
.map(function (_, i) { return classesTensor.get(row, col, anchor, i); })
.map(function (classScore, classLabel) { return ({
.map(function (classScore, label) { return ({
classScore: classScore,
classLabel: classLabel
label: label
}); })
.reduce(function (max$$1, curr) { return max$$1.classScore > curr.classScore ? max$$1 : curr; });
};
......@@ -2690,9 +2753,9 @@
TinyYolov2LossFunction.prototype.validateGroundTruthBoxes = function (groundTruth) {
var _this = this;
groundTruth.forEach(function (_a) {
var x = _a.x, y = _a.y, width = _a.width, height = _a.height, classLabel = _a.classLabel;
if (typeof classLabel !== 'number' || classLabel < 0 || classLabel > (_this.config.classes.length - 1)) {
throw new Error("invalid ground truth data, expected classLabel to be a number in [0, " + (_this.config.classes.length - 1) + "]");
var x = _a.x, y = _a.y, width = _a.width, height = _a.height, label = _a.label;
if (typeof label !== 'number' || label < 0 || label > (_this.config.classes.length - 1)) {
throw new Error("invalid ground truth data, expected label to be a number in [0, " + (_this.config.classes.length - 1) + "]");
}
if (x < 0 || x > 1 || y < 0 || y > 1 || width < 0 || (x + width) > 1 || height < 0 || (y + height) > 1) {
throw new Error("invalid ground truth data, box is out of image boundaries " + JSON.stringify({ x: x, y: y, width: width, height: height }));
......@@ -2703,15 +2766,15 @@
var _this = this;
var groundTruthBoxes = groundTruth
.map(function (_a) {
var x = _a.x, y = _a.y, width = _a.width, height = _a.height, classLabel = _a.classLabel;
var x = _a.x, y = _a.y, width = _a.width, height = _a.height, label = _a.label;
return ({
box: (new Rect(x, y, width, height)).toBoundingBox(),
classLabel: classLabel
box: new Rect(x, y, width, height),
label: label
});
});
return groundTruthBoxes.map(function (_a) {
var box = _a.box, classLabel = _a.classLabel;
var _b = box.rescale(_this.reshapedImgDims), left = _b.left, top = _b.top, width = _b.width, height = _b.height;
var box = _a.box, label = _a.label;
var _b = box.rescale(_this.reshapedImgDims), left = _b.left, top = _b.top, bottom = _b.bottom, right = _b.right, x = _b.x, y = _b.y, width = _b.width, height = _b.height;
var ctX = left + (width / 2);
var ctY = top + (height / 2);
var col = Math.floor((ctX / _this.inputSize) * _this.numCells);
......@@ -2721,7 +2784,7 @@
iou: iou(new BoundingBox(0, 0, anchor.x * CELL_SIZE, anchor.y * CELL_SIZE), new BoundingBox(0, 0, width, height))
}); }).sort(function (a1, a2) { return a2.iou - a1.iou; });
var anchor = anchorsByIou[0].idx;
return { row: row, col: col, anchor: anchor, box: box, classLabel: classLabel };
return { row: row, col: col, anchor: anchor, box: box, label: label };
});
};
TinyYolov2LossFunction.prototype.createGroundTruthMask = function () {
......@@ -2764,8 +2827,8 @@
var buf = mask.buffer();
var classValuesOffset = 5;
this.groundTruth.forEach(function (_a) {
var row = _a.row, col = _a.col, anchor = _a.anchor, classLabel = _a.classLabel;
buf.set(1, row, col, anchor, classValuesOffset + classLabel);
var row = _a.row, col = _a.col, anchor = _a.anchor, label = _a.label;
buf.set(1, row, col, anchor, classValuesOffset + label);
});
return mask;
};
......@@ -2878,11 +2941,15 @@
coordLoss: coordLoss.dataSync()[0],
classLoss: classLoss.dataSync()[0]
};
reportLosses(losses, filteredGroundTruthBoxes.length);
var report = {
losses: losses,
numBoxes: filteredGroundTruthBoxes.length,
inputSize: inputSize
};
reportLosses(report);
}
return totalLoss;
}, true);
netInput.dispose();
return [2 /*return*/, loss];
}
});
......@@ -2905,7 +2972,6 @@
return groundTruth.filter(function (_a) {
var x = _a.x, y = _a.y, width = _a.width, height = _a.height;
var box = (new Rect(x, y, width, height))
.toBoundingBox()
.rescale({ height: imgHeight, width: imgWidth });
var isTooTiny = box.width < minBoxSize || box.height < minBoxSize;
return !isTooTiny;
......@@ -2994,7 +3060,7 @@
throw new Error('FaceDetectionNet - load model before inference');
}
return tidy(function () {
var batchTensor = input.toBatchTensor(512, false);
var batchTensor = input.toBatchTensor(512, false).toFloat();
var x = sub(mul(batchTensor, scalar(0.007843137718737125)), scalar(1));
var features = mobileNetV1(x, params.mobilenetv1);
var _a = predictionLayer(features.out, features.conv11, params.prediction_layer), boxPredictions = _a.boxPredictions, classPredictions = _a.classPredictions;
......@@ -3008,7 +3074,7 @@
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true)];
return [4 /*yield*/, toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
......@@ -3018,10 +3084,10 @@
if (minConfidence === void 0) { minConfidence = 0.8; }
if (maxResults === void 0) { maxResults = 100; }
return __awaiter$1(this, void 0, void 0, function () {
var netInput, _a, _boxes, _scores, boxes, scores, i, scoresData, _b, _c, iouThreshold, indices, paddings, results;
var netInput, _a, _boxes, _scores, boxes, scores, i, scoresData, _b, _c, iouThreshold, indices, reshapedDims, inputSize, padX, padY, results;
return __generator$1(this, function (_d) {
switch (_d.label) {
case 0: return [4 /*yield*/, toNetInput(input, true)];
case 0: return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _d.sent();
_a = this.forwardInput(netInput), _boxes = _a.boxes, _scores = _a.scores;
......@@ -3037,17 +3103,20 @@
scoresData = _c.apply(_b, [_d.sent()]);
iouThreshold = 0.5;
indices = nonMaxSuppression$2(boxes, scoresData, maxResults, iouThreshold, minConfidence);
paddings = netInput.getRelativePaddings(0);
reshapedDims = netInput.getReshapedInputDimensions(0);
inputSize = netInput.inputSize;
padX = inputSize / reshapedDims.width;
padY = inputSize / reshapedDims.height;
results = indices
.map(function (idx) {
var _a = [
Math.max(0, boxes.get(idx, 0)),
Math.min(1.0, boxes.get(idx, 2))
].map(function (val) { return val * paddings.y; }), top = _a[0], bottom = _a[1];
].map(function (val) { return val * padY; }), top = _a[0], bottom = _a[1];
var _b = [
Math.max(0, boxes.get(idx, 1)),
Math.min(1.0, boxes.get(idx, 3))
].map(function (val) { return val * paddings.x; }), left = _b[0], right = _b[1];
].map(function (val) { return val * padX; }), left = _b[0], right = _b[1];
return new FaceDetection(scoresData[idx], new Rect(left, top, right - left, bottom - top), {
height: netInput.getInputHeight(0),
width: netInput.getInputWidth(0)
......@@ -3114,6 +3183,114 @@
};
}
var FaceLandmark68NetBase = /** @class */ (function (_super) {
__extends$1(FaceLandmark68NetBase, _super);
function FaceLandmark68NetBase(_name) {
var _this = _super.call(this, _name) || this;
_this.__name = _name;
return _this;
}
FaceLandmark68NetBase.prototype.runNet = function (_) {
throw new Error(this.__name + " - runNet not implemented");
};
FaceLandmark68NetBase.prototype.postProcess = function (output, inputSize, originalDimensions) {
var inputDimensions = originalDimensions.map(function (_a) {
var width = _a.width, height = _a.height;
var scale = inputSize / Math.max(height, width);
return {
width: width * scale,
height: height * scale
};
});
var batchSize = inputDimensions.length;
return tidy(function () {
var createInterleavedTensor = function (fillX, fillY) {
return stack([
fill([68], fillX),
fill([68], fillY)
], 1).as2D(1, 136).as1D();
};
var getPadding = function (batchIdx, cond) {
var _a = inputDimensions[batchIdx], width = _a.width, height = _a.height;
return cond(width, height) ? Math.abs(width - height) / 2 : 0;
};
var getPaddingX = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return w < h; }); };
var getPaddingY = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return h < w; }); };
var landmarkTensors = output
.mul(fill([batchSize, 136], inputSize))
.sub(stack(Array.from(Array(batchSize), function (_, batchIdx) {
return createInterleavedTensor(getPaddingX(batchIdx), getPaddingY(batchIdx));
})))
.div(stack(Array.from(Array(batchSize), function (_, batchIdx) {
return createInterleavedTensor(inputDimensions[batchIdx].width, inputDimensions[batchIdx].height);
})));
return landmarkTensors;
});
};
FaceLandmark68NetBase.prototype.forwardInput = function (input) {
var _this = this;
return tidy(function () {
var out = _this.runNet(input);
return _this.postProcess(out, input.inputSize, input.inputDimensions.map(function (_a) {
var height = _a[0], width = _a[1];
return ({ height: height, width: width });
}));
});
};
FaceLandmark68NetBase.prototype.forward = function (input) {
return __awaiter$1(this, void 0, void 0, function () {
var _a;
return __generator$1(this, function (_b) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
});
};
FaceLandmark68NetBase.prototype.detectLandmarks = function (input) {
return __awaiter$1(this, void 0, void 0, function () {
var _this = this;
var netInput, landmarkTensors, landmarksForBatch;
return __generator$1(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _a.sent();
landmarkTensors = tidy(function () { return unstack(_this.forwardInput(netInput)); });
return [4 /*yield*/, Promise.all(landmarkTensors.map(function (landmarkTensor, batchIdx) { return __awaiter$1(_this, void 0, void 0, function () {
var landmarksArray, _a, _b, xCoords, yCoords;
return __generator$1(this, function (_c) {
switch (_c.label) {
case 0:
_b = (_a = Array).from;
return [4 /*yield*/, landmarkTensor.data()];
case 1:
landmarksArray = _b.apply(_a, [_c.sent()]);
xCoords = landmarksArray.filter(function (_, i) { return isEven(i); });
yCoords = landmarksArray.filter(function (_, i) { return !isEven(i); });
return [2 /*return*/, new FaceLandmarks68(Array(68).fill(0).map(function (_, i) { return new Point(xCoords[i], yCoords[i]); }), {
height: netInput.getInputHeight(batchIdx),
width: netInput.getInputWidth(batchIdx),
})];
}
});
}); }))];
case 2:
landmarksForBatch = _a.sent();
landmarkTensors.forEach(function (t) { return t.dispose(); });
return [2 /*return*/, netInput.isBatchInput
? landmarksForBatch
: landmarksForBatch[0]];
}
});
});
};
return FaceLandmark68NetBase;
}(NeuralNetwork));
function fullyConnectedLayer(x, params) {
return tidy(function () {
return add(matMul(x, params.weights), params.bias);
......@@ -3174,18 +3351,18 @@
if (strides === void 0) { strides = [2, 2]; }
return maxPool(x, [2, 2], strides, 'valid');
}
var FaceLandmarkNet = /** @class */ (function (_super) {
__extends$1(FaceLandmarkNet, _super);
function FaceLandmarkNet() {
return _super.call(this, 'FaceLandmarkNet') || this;
var FaceLandmark68Net = /** @class */ (function (_super) {
__extends$1(FaceLandmark68Net, _super);
function FaceLandmark68Net() {
return _super.call(this, 'FaceLandmark68Net') || this;
}
FaceLandmarkNet.prototype.forwardInput = function (input) {
FaceLandmark68Net.prototype.runNet = function (input) {
var params = this.params;
if (!params) {
throw new Error('FaceLandmarkNet - load model before inference');
throw new Error('FaceLandmark68Net - load model before inference');
}
return tidy(function () {
var batchTensor = input.toBatchTensor(128, true);
var batchTensor = input.toBatchTensor(128, true).toFloat();
var out = conv(batchTensor, params.conv0);
out = maxPool$1(out);
out = conv(out, params.conv1);
......@@ -3199,90 +3376,25 @@
out = maxPool$1(out, [1, 1]);
out = conv(out, params.conv7);
var fc0 = relu(fullyConnectedLayer(out.as2D(out.shape[0], -1), params.fc0));
var fc1 = fullyConnectedLayer(fc0, params.fc1);
var createInterleavedTensor = function (fillX, fillY) {
return stack([
fill([68], fillX),
fill([68], fillY)
], 1).as2D(1, 136).as1D();
};
/* shift coordinates back, to undo centered padding
x = ((x * widthAfterPadding) - shiftX) / width
y = ((y * heightAfterPadding) - shiftY) / height
*/
var landmarkTensors = fc1
.mul(stack(Array.from(Array(input.batchSize), function (_, batchIdx) {
return createInterleavedTensor(input.getPaddings(batchIdx).x + input.getInputWidth(batchIdx), input.getPaddings(batchIdx).y + input.getInputHeight(batchIdx));
})))
.sub(stack(Array.from(Array(input.batchSize), function (_, batchIdx) {
return createInterleavedTensor(Math.floor(input.getPaddings(batchIdx).x / 2), Math.floor(input.getPaddings(batchIdx).y / 2));
})))
.div(stack(Array.from(Array(input.batchSize), function (_, batchIdx) {
return createInterleavedTensor(input.getInputWidth(batchIdx), input.getInputHeight(batchIdx));
})));
return landmarkTensors;
});
};
FaceLandmarkNet.prototype.forward = function (input) {
return __awaiter$1(this, void 0, void 0, function () {
var _a;
return __generator$1(this, function (_b) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
});
};
FaceLandmarkNet.prototype.detectLandmarks = function (input) {
return __awaiter$1(this, void 0, void 0, function () {
var _this = this;
var netInput, landmarkTensors, landmarksForBatch;
return __generator$1(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, toNetInput(input, true)];
case 1:
netInput = _a.sent();
landmarkTensors = tidy(function () { return unstack(_this.forwardInput(netInput)); });
return [4 /*yield*/, Promise.all(landmarkTensors.map(function (landmarkTensor, batchIdx) { return __awaiter$1(_this, void 0, void 0, function () {
var landmarksArray, _a, _b, xCoords, yCoords;
return __generator$1(this, function (_c) {
switch (_c.label) {
case 0:
_b = (_a = Array).from;
return [4 /*yield*/, landmarkTensor.data()];
case 1:
landmarksArray = _b.apply(_a, [_c.sent()]);
xCoords = landmarksArray.filter(function (_, i) { return isEven(i); });
yCoords = landmarksArray.filter(function (_, i) { return !isEven(i); });
return [2 /*return*/, new FaceLandmarks68(Array(68).fill(0).map(function (_, i) { return new Point(xCoords[i], yCoords[i]); }), {
height: netInput.getInputHeight(batchIdx),
width: netInput.getInputWidth(batchIdx),
})];
}
});
}); }))];
case 2:
landmarksForBatch = _a.sent();
landmarkTensors.forEach(function (t) { return t.dispose(); });
return [2 /*return*/, netInput.isBatchInput
? landmarksForBatch
: landmarksForBatch[0]];
}
});
return fullyConnectedLayer(fc0, params.fc1);
});
};
FaceLandmarkNet.prototype.loadQuantizedParams = function (uri) {
FaceLandmark68Net.prototype.loadQuantizedParams = function (uri) {
return loadQuantizedParams$2(uri);
};
FaceLandmarkNet.prototype.extractParams = function (weights) {
FaceLandmark68Net.prototype.extractParams = function (weights) {
return extractParams$2(weights);
};
return FaceLandmarkNet;
}(NeuralNetwork));
return FaceLandmark68Net;
}(FaceLandmark68NetBase));
var FaceLandmarkNet = /** @class */ (function (_super) {
__extends$1(FaceLandmarkNet, _super);
function FaceLandmarkNet() {
return _super !== null && _super.apply(this, arguments) || this;
}
return FaceLandmarkNet;
}(FaceLandmark68Net));
function createFaceLandmarkNet(weights) {
var net = new FaceLandmarkNet();
net.extractWeights(weights);
......@@ -3521,7 +3633,7 @@
throw new Error('FaceRecognitionNet - load model before inference');
}
return tidy(function () {
var batchTensor = input.toBatchTensor(150, true);
var batchTensor = input.toBatchTensor(150, true).toFloat();
var meanRgb = [122.782, 117.001, 104.298];
var normalized = normalize(batchTensor, meanRgb).div(scalar(256));
var out = convDown(normalized, params.conv32_down);
......@@ -3552,7 +3664,7 @@
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true)];
return [4 /*yield*/, toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
......@@ -3564,7 +3676,7 @@
var netInput, faceDescriptorTensors, faceDescriptorsForBatch;
return __generator$1(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, toNetInput(input, true)];
case 0: return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _a.sent();
faceDescriptorTensors = tidy(function () { return unstack(_this.forwardInput(netInput)); });
......@@ -3601,24 +3713,23 @@
function computeDescriptorsFactory(recognitionNet) {
return function (input, alignedFaceBoxes, useBatchProcessing) {
return __awaiter$1(this, void 0, void 0, function () {
var alignedFaceTensors, descriptors, _a;
var alignedFaceCanvases, descriptors, _a;
return __generator$1(this, function (_b) {
switch (_b.label) {
case 0: return [4 /*yield*/, extractFaceTensors(input, alignedFaceBoxes)];
case 0: return [4 /*yield*/, extractFaces(input, alignedFaceBoxes)];
case 1:
alignedFaceTensors = _b.sent();
alignedFaceCanvases = _b.sent();
if (!useBatchProcessing) return [3 /*break*/, 3];
return [4 /*yield*/, recognitionNet.computeFaceDescriptor(alignedFaceTensors)];
return [4 /*yield*/, recognitionNet.computeFaceDescriptor(alignedFaceCanvases)];
case 2:
_a = _b.sent();
return [3 /*break*/, 5];
case 3: return [4 /*yield*/, Promise.all(alignedFaceTensors.map(function (faceTensor) { return recognitionNet.computeFaceDescriptor(faceTensor); }))];
case 3: return [4 /*yield*/, Promise.all(alignedFaceCanvases.map(function (canvas) { return recognitionNet.computeFaceDescriptor(canvas); }))];
case 4:
_a = _b.sent();
_b.label = 5;
case 5:
descriptors = _a;
alignedFaceTensors.forEach(function (t) { return t.dispose(); });
return [2 /*return*/, descriptors];
}
});
......@@ -3630,27 +3741,26 @@
return function (input, useBatchProcessing) {
if (useBatchProcessing === void 0) { useBatchProcessing = false; }
return __awaiter$1(this, void 0, void 0, function () {
var detections, faceTensors, faceLandmarksByFace, _a, alignedFaceBoxes, descriptors;
var detections, faceCanvases, faceLandmarksByFace, _a, alignedFaceBoxes, descriptors;
return __generator$1(this, function (_b) {
switch (_b.label) {
case 0: return [4 /*yield*/, detectFaces(input)];
case 1:
detections = _b.sent();
return [4 /*yield*/, extractFaceTensors(input, detections)];
return [4 /*yield*/, extractFaces(input, detections)];
case 2:
faceTensors = _b.sent();
faceCanvases = _b.sent();
if (!useBatchProcessing) return [3 /*break*/, 4];
return [4 /*yield*/, landmarkNet.detectLandmarks(faceTensors)];
return [4 /*yield*/, landmarkNet.detectLandmarks(faceCanvases)];
case 3:
_a = _b.sent();
return [3 /*break*/, 6];
case 4: return [4 /*yield*/, Promise.all(faceTensors.map(function (faceTensor) { return landmarkNet.detectLandmarks(faceTensor); }))];
case 4: return [4 /*yield*/, Promise.all(faceCanvases.map(function (canvas) { return landmarkNet.detectLandmarks(canvas); }))];
case 5:
_a = _b.sent();
_b.label = 6;
case 6:
faceLandmarksByFace = _a;
faceTensors.forEach(function (t) { return t.dispose(); });
alignedFaceBoxes = faceLandmarksByFace.map(function (landmarks, i) { return landmarks.align(detections[i].getBox()); });
return [4 /*yield*/, computeDescriptors(input, alignedFaceBoxes, useBatchProcessing)];
case 7:
......@@ -3896,6 +4006,14 @@
return scales;
}
var MtcnnBox = /** @class */ (function (_super) {
__extends$1(MtcnnBox, _super);
function MtcnnBox(left, top, right, bottom) {
return _super.call(this, { left: left, top: top, right: right, bottom: bottom }, true) || this;
}
return MtcnnBox;
}(Box));
function normalize$1(x) {
return tidy(function () { return mul(sub(x, scalar(127.5)), scalar(0.0078125)); });
}
......@@ -3953,7 +4071,7 @@
var boundingBoxes = indices.map(function (idx) {
var cell = new BoundingBox(Math.round((idx.y * CELL_STRIDE + 1) / scale), Math.round((idx.x * CELL_STRIDE + 1) / scale), Math.round((idx.y * CELL_STRIDE + CELL_SIZE$1) / scale), Math.round((idx.x * CELL_STRIDE + CELL_SIZE$1) / scale));
var score = scoresTensor.get(idx.y, idx.x);
var region = new BoundingBox(regionsTensor.get(idx.y, idx.x, 0), regionsTensor.get(idx.y, idx.x, 1), regionsTensor.get(idx.y, idx.x, 2), regionsTensor.get(idx.y, idx.x, 3));
var region = new MtcnnBox(regionsTensor.get(idx.y, idx.x, 0), regionsTensor.get(idx.y, idx.x, 1), regionsTensor.get(idx.y, idx.x, 2), regionsTensor.get(idx.y, idx.x, 3));
return {
cell: cell,
score: score,
......@@ -4121,7 +4239,7 @@
indicesNms = nonMaxSuppression$1(filteredBoxes, filteredScores, 0.7);
stats.stage2_nms = Date.now() - ts;
regions_1 = indicesNms.map(function (idx) {
return new BoundingBox(rnetOuts[indices[idx]].regions.get(0, 0), rnetOuts[indices[idx]].regions.get(0, 1), rnetOuts[indices[idx]].regions.get(0, 2), rnetOuts[indices[idx]].regions.get(0, 3));
return new MtcnnBox(rnetOuts[indices[idx]].regions.get(0, 0), rnetOuts[indices[idx]].regions.get(0, 1), rnetOuts[indices[idx]].regions.get(0, 2), rnetOuts[indices[idx]].regions.get(0, 3));
});
finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; });
finalBoxes = indicesNms.map(function (idx, i) { return filteredBoxes[idx].calibrate(regions_1[i]); });
......@@ -4191,7 +4309,7 @@
var idx = _a.idx;
return idx;
});
filteredRegions = indices.map(function (idx) { return new BoundingBox(onetOuts[idx].regions.get(0, 0), onetOuts[idx].regions.get(0, 1), onetOuts[idx].regions.get(0, 2), onetOuts[idx].regions.get(0, 3)); });
filteredRegions = indices.map(function (idx) { return new MtcnnBox(onetOuts[idx].regions.get(0, 0), onetOuts[idx].regions.get(0, 1), onetOuts[idx].regions.get(0, 2), onetOuts[idx].regions.get(0, 3)); });
filteredBoxes = indices
.map(function (idx, i) { return inputBoxes[idx].calibrate(filteredRegions[i]); });
filteredScores = indices.map(function (idx) { return scores[idx]; });
......@@ -4233,7 +4351,7 @@
Mtcnn.prototype.forwardInput = function (input, forwardParams) {
if (forwardParams === void 0) { forwardParams = {}; }
return __awaiter$1(this, void 0, void 0, function () {
var params, inputTensor, inputCanvas, stats, tsTotal, imgTensor, onReturn, _a, height, width, _b, minFaceSize, scaleFactor, maxNumScales, scoreThresholds, scaleSteps, scales, ts, out1, out2, out3, results;
var params, inputCanvas, stats, tsTotal, imgTensor, onReturn, _a, height, width, _b, minFaceSize, scaleFactor, maxNumScales, scoreThresholds, scaleSteps, scales, ts, out1, out2, out3, results;
return __generator$1(this, function (_c) {
switch (_c.label) {
case 0:
......@@ -4241,7 +4359,6 @@
if (!params) {
throw new Error('Mtcnn - load model before inference');
}
inputTensor = input.inputs[0];
inputCanvas = input.canvases[0];
if (!inputCanvas) {
throw new Error('Mtcnn - inputCanvas is not defined, note that passing tensors into Mtcnn.forwardInput is not supported yet.');
......@@ -4249,12 +4366,11 @@
stats = {};
tsTotal = Date.now();
imgTensor = tidy(function () {
return bgrToRgbTensor(expandDims(inputTensor).toFloat());
return bgrToRgbTensor(expandDims(fromPixels(inputCanvas)).toFloat());
});
onReturn = function (results) {
// dispose tensors on return
imgTensor.dispose();
input.dispose();
stats.total = Date.now() - tsTotal;
return results;
};
......@@ -4313,7 +4429,7 @@
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true, true)];
return [4 /*yield*/, toNetInput(input)];
case 1: return [4 /*yield*/, _a.apply(this, [_b.sent(),
forwardParams])];
case 2: return [2 /*return*/, (_b.sent()).results];
......@@ -4329,7 +4445,7 @@
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input, true, true)];
return [4 /*yield*/, toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent(),
forwardParams])];
}
......@@ -4421,7 +4537,7 @@
}(TinyYolov2));
var detectionNet = new FaceDetectionNet();
var landmarkNet = new FaceLandmarkNet();
var landmarkNet = new FaceLandmark68Net();
var recognitionNet = new FaceRecognitionNet();
// nets need more specific names, to avoid ambiguity in future
// when alternative net implementations are provided
......@@ -4494,9 +4610,12 @@
}
exports.tf = tfCore_esm;
exports.Box = Box;
exports.BoundingBox = BoundingBox;
exports.LabeledBox = LabeledBox;
exports.ObjectDetection = ObjectDetection;
exports.Point = Point;
exports.PredictedBox = PredictedBox;
exports.Rect = Rect;
exports.disposeUnusedWeightTensors = disposeUnusedWeightTensors;
exports.extractWeightEntryFactory = extractWeightEntryFactory;
......@@ -4538,6 +4657,9 @@
exports.isDimensions = isDimensions;
exports.computeReshapedDimensions = computeReshapedDimensions;
exports.getCenterPoint = getCenterPoint;
exports.range = range$1;
exports.isValidNumber = isValidNumber;
exports.isValidProbablitiy = isValidProbablitiy;
exports.NeuralNetwork = NeuralNetwork;
exports.FaceDetection = FaceDetection;
exports.FaceLandmarks = FaceLandmarks;
......@@ -4552,9 +4674,10 @@
exports.createFaceDetectionNet = createFaceDetectionNet;
exports.faceDetectionNet = faceDetectionNet;
exports.FaceDetectionNet = FaceDetectionNet;
exports.FaceLandmarkNet = FaceLandmarkNet;
exports.createFaceLandmarkNet = createFaceLandmarkNet;
exports.faceLandmarkNet = faceLandmarkNet;
exports.FaceLandmarkNet = FaceLandmarkNet;
exports.FaceLandmark68Net = FaceLandmark68Net;
exports.createFaceRecognitionNet = createFaceRecognitionNet;
exports.faceRecognitionNet = faceRecognitionNet;
exports.FaceRecognitionNet = FaceRecognitionNet;
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment