@@ -60,17 +68,25 @@ Browse to http://localhost:3000/.
...
@@ -60,17 +68,25 @@ Browse to http://localhost:3000/.
## About the Package
## About the Package
<aname="about-face-detection"></a>
<aname="about-face-detection-ssd"></a>
### Face Detection
### Face Detection - SSD Mobilenet v1
For face detection, this project implements a SSD (Single Shot Multibox Detector) based on MobileNetV1. The neural net will compute the locations of each face in an image and will return the bounding boxes together with it's probability for each face.
For face detection, this project implements a SSD (Single Shot Multibox Detector) based on MobileNetV1. The neural net will compute the locations of each face in an image and will return the bounding boxes together with it's probability for each face. This face detector is aiming towards obtaining high accuracy in detecting face bounding boxes instead of low inference time.
The face detection model has been trained on the [WIDERFACE dataset](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/) and the weights are provided by [yeephycho](https://github.com/yeephycho) in [this](https://github.com/yeephycho/tensorflow-face-detection) repo.
The face detection model has been trained on the [WIDERFACE dataset](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/) and the weights are provided by [yeephycho](https://github.com/yeephycho) in [this](https://github.com/yeephycho/tensorflow-face-detection) repo.
<aname="about-face-detection-mtcnn"></a>
### Face Detection & 5 Point Face Landmarks - MTCNN
MTCNN (Multi-task Cascaded Convolutional Neural Networks) represents an alternative to SSD Mobilenet v1, which offers much more room for configuration and is able to achieve much lower processing times. MTCNN is a 3 stage cascaded CNN, which simultanously returns 5 face landmark points along with the bounding boxes and scores for each face. By limiting the minimum size of faces expected in an image, MTCNN allows you to process frames from your webcam in realtime. Additionally with 2MB, the size of the weights file is only a third of the size of the quantized SSD Mobilenet v1 model (~6MB).
MTCNN has been presented in the paper [Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://kpzhang93.github.io/MTCNN_face_detection_alignment/paper/spl.pdf) by Zhang et al. and the model weights are provided in the official [repo](https://github.com/kpzhang93/MTCNN_face_detection_alignment) of the MTCNN implementation.
<aname="about-face-recognition"></a>
<aname="about-face-recognition"></a>
### Face Recognition
### Face Recognition - FaceNet
For face recognition, a ResNet-34 like architecture is implemented to compute a face descriptor (a feature vector with 128 values) from any given face image, which is used to describe the characteristics of a persons face. The model is **not** limited to the set of faces used for training, meaning you can use it for face recognition of any person, for example yourself. You can determine the similarity of two arbitrary faces by comparing their face descriptors, for example by computing the euclidean distance or using any other classifier of your choice.
For face recognition, a ResNet-34 like architecture is implemented to compute a face descriptor (a feature vector with 128 values) from any given face image, which is used to describe the characteristics of a persons face. The model is **not** limited to the set of faces used for training, meaning you can use it for face recognition of any person, for example yourself. You can determine the similarity of two arbitrary faces by comparing their face descriptors, for example by computing the euclidean distance or using any other classifier of your choice.
...
@@ -78,7 +94,7 @@ The neural net is equivalent to the **FaceRecognizerNet** used in [face-recognit
...
@@ -78,7 +94,7 @@ The neural net is equivalent to the **FaceRecognizerNet** used in [face-recognit
<aname="about-face-landmark-detection"></a>
<aname="about-face-landmark-detection"></a>
### Face Landmark Detection
### 68 Point Face Landmark Detection
This package implements a CNN to detect the 68 point face landmarks for a given face image.
This package implements a CNN to detect the 68 point face landmarks for a given face image.